对轧制态Mg-12Gd-3Y-0.5Zr镁合金的室温低周、超高周疲劳, 高温等温疲劳以及热机械疲劳性能进行了研究, 并对其疲劳失效机制进行了分析。结果表明: 对室温低周疲劳、超高周疲劳来说, 其失效机制主要是夹杂或大的第二相引起的疲劳开裂; 对于低周疲劳, 裂纹萌生于表面或亚表面, 而对于超高周疲劳, 裂纹起源于内部; 该合金的高温等温疲劳与热机械疲劳断裂裂纹都萌生于表面, 其疲劳机制为循环滑移和氧化物夹杂共同作用; 该合金在室温到200 ℃有良好的抗拉强度与疲劳强度; 反相位热机械疲劳寿命比同相位的高。
所属栏目
收稿日期
2010/2/232010/11/17
作者单位
杨晓明:中国科学院金属研究所沈阳材料科学国家实验室, 沈阳 110016
杨帆:中国科学院金属研究所沈阳材料科学国家实验室, 沈阳 110016
尹树明:中国科学院金属研究所沈阳材料科学国家实验室, 沈阳 110016
王渠东:上海交通大学轻合金精密成型国家工程研发中心, 上海 200020
吴世丁:中国科学院金属研究所沈阳材料科学国家实验室, 沈阳 110016
张哲峰:中国科学院金属研究所沈阳材料科学国家实验室, 沈阳 110016
李守新:中国科学院金属研究所沈阳材料科学国家实验室, 沈阳 110016
备注
杨晓明(1976-), 男, 辽宁沈阳人, 博士研究生。
引用该论文:
YANG Xiao-ming,YANG Fan,YIN Shu-ming,WANG Qu-dong,WU Shi-ding,ZHANG Zhe-feng,LI Shou-xin.Different Fatigue Behaviors of Mg-12Gd-3Y-0.5Zr Magnesium Alloy[J].Materials for mechancial engineering,2011,35(4):41~45
杨晓明,杨帆,尹树明,王渠东,吴世丁,张哲峰,李守新.Mg-12Gd-3Y-0.5Zr镁合金的不同疲劳行为[J].机械工程材料,2011,35(4):41~45
参考文献
【1】
KIM W J, CHUNG S W, CHUNG C S,et al. Superplasticity in thin magnesium alloy sheet and deformation mechanism maps for magnesium alloys at elevated temperatures[J].Acta Materialia,2001,49:3337-3345.
【2】
IDRIS M H, CLEGG A J. Processing and evolution of investment cast magnesium-base alloy[M].Transactions of American Foundrymen′s Society,1996,104(20/23):237-244.
【3】
MOHRI T, MABUCHI M, SAITO N,et al. Microstructure and properties of an Mg-4Y-3RE alloy processed by thermo-mechanical treatment[J].Materials Science and Engineering A,1998,257:287-294.
【4】
ANYANWU I A, KAMODO S K, KOJIMA Y K. Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys[J].Materials Transactions,2001,42:1206-1201.
【5】
BAI J, SUN Y S, XUN S,et al. Microstructure and tensile creep behavior of Mg-4Al based magnesium alloys with alkaline-earth elements Sr and Ca additions [J].Materials Science and Engineering A,2006,419:181-188.
【6】
HAN B Q, LAVERNIA E J. High-temperature behavior of a cryomilled ultrafine-grained Al-7.5% Mg alloy[J].Materials Science and Engineering A,2005,410:417-421.
【7】
ZHANG P. Creep behavior of the die-cast Mg-Al alloy AS21[J].Scripta Materialia,2005,52(4):277-282.
【8】
GAO Y, WANG Q D, GU J H,et al. Effects of heat treatments on microstructure and mechanical properties of Mg-15Gd-5Y-0.5Zr alloy[J].Journal of Rare Earths,2008,26:298-302.
【9】
YIN S M, YANG H J, LI S X,et al. Cyclic deformation behavior of as-extruded Mg-3%Al-1%Zn[J].Scripta Materialia,2008,58:751-754.
【10】
尹树明,吴世丁,李守新.粗晶镁合金AZ31D的拉压不对称性和组织演化[J].材料研究学报, 2007,21(增刊):38-42.
【11】
YANG X M, YAGN H J, YANG F,et al. Tensile and isothermal behaviors of Mg-12Gd-3Y-0.5Zr alloy at high temperature[J].Journal of Materials Science and Technology,2009,25(6):731-737.
【12】
HANTZSCHE K, BOHLEN J, WENDT J,et al. Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets[J].Scripta Materialia,2010,63(7):725-730.
【13】
MACKENZIE L W F, PEKGULERYUZ M. The influences of alloying additions and processing parameters on the rolling microstructures and textures of magnesium alloys[J].Materials Science and Engineering A,2008,480:189-193.
【14】
OKAYASU M, SATO K, MIZUNO M,et al. Fatigue pro-perties of ultra-fine grained dual phase ferrite/martensite low carbon steel[J].International Journal of Fatigue,2008,30:1358-1365.
【15】
YANG F, YIN S M, LI S X,et al. Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime[J].Materials Science and Engineering A,2008,491:131-136.
【16】
HUANG X Y, BRUCKNER-FOIT A, BESEL M,et al. Simplified three-dimensional model for fatigue crack initiation[J].Engineering Fracture Mechanics,2007,74:2981-2991.
【17】
XIAO W M, SHI Y W, XU G C,et al. Effect of rare earth on mechanical creep-fatigue property of SnAgCu solder joint[J].Journal of Alloys and Compounds,2009,472:198-202.