返回顶部
位置:标准分享网>机械工程材料论文>高效碲化铋基热电材料中热变形诱导的多尺度微结构效应
高效碲化铋基热电材料中热变形诱导的多尺度微结构效应
  • 资料大小:

  • 更新时间:

    2017-04-24

  • 授权方式:

    共享学习

  • 资料格式:

    PDF

  • 软件等级:

  • 官方主页:

    http://www.ndt88.com

资料简介

简述了碲化铋基合金的制备方法和本征性质;总结了碲化铋基合金中热变形诱导的多尺度微结构,包括原子级本征点缺陷、晶格线缺陷、纳米级的晶格变形区域、微米级的织构和晶粒等;综述了多尺度微结构对碲化铋基合金热电性能的影响。

所属栏目

综述国家自然科学基金资助项目(61534001,51271165)

收稿日期

2017/4/242017/10/4

作者单位

翟仁爽:浙江大学材料科学与工程学院, 杭州 310027
吴业浩:浙江大学材料科学与工程学院, 杭州 310027
朱铁军:浙江大学材料科学与工程学院, 杭州 310027
赵新兵:浙江大学材料科学与工程学院, 杭州 310027

备注

翟仁爽(1991-),男,江苏扬州人,博士研究生

引用该论文:

ZHAI Renshuang,WU Yehao,ZHU Tiejun,ZHAO Xinbing.Hot Deformation Induced Multi-scale Microstructure Effect in High-performance Bismuth Telluride Based Thermoelectric Material[J].Materials for mechancial engineering,2017,41(11):1~12
翟仁爽,吴业浩,朱铁军,赵新兵.高效碲化铋基热电材料中热变形诱导的多尺度微结构效应[J].机械工程材料,2017,41(11):1~12


参考文献

【1】

DISALVO F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285: 703-706.

【2】

YANG J, CAILLAT T. Thermoelectric materials for space and automotive power generation[J]. MRS Bulletin, 2006, 31(3): 224-229.

【3】

YANG J, STABLER F R. Automotive applications of thermoelectric materials[J]. Journal of Electronic Materials, 2009, 38(7): 1245-1251.

【4】

KUMAR G S, PRASAD G, POHL R O. Experimental determinations of the lorenz number[J]. Journal of Materials Science, 1993, 28(16): 4261-4272.

【5】

ROWE D. Thermoelectrics and its energy harvesting: materials, preparation, and characterization in thermoelectrics[J]. Journal of Solid State Chemistry, 2012, 115(11):214-224.

【6】

LIU W, TAN X, YIN K, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of N-type Mg2Si1-xSnx solid solutions[J]. Physical Review Letter, 2012, 108(16): 166601-166601.

【7】

WANG H, PEI Y, LALONDE A D, et al. Weak electron-phonon coupling contributing to high thermoelectric performance in N-type PbSe[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(25): 9705-9709.

【8】

KIM S I, LEE K H, MUN H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics[J]. Science, 2015, 348(6230): 109-114.

【9】

BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416): 414-418.

【10】

YANG S H, ZHU T J, SUN T, et al. Nanostructures in high-performance (GeTe)x(AgSbTe2)100-x thermoelectric materials[J]. Nanotechnology, 2008, 19(24): 245707-245707.

【11】

FU C, BAI S, LIU Y, et al. Realizing high figure of merit in heavy-band P-type half-heusler thermoelectric materials[J]. Nature Communication, 2015, 6: 8144-8144.

【12】

POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320(5876): 634-638.

【13】

ZHU T J, FU C G, XIE H H, et al. Lattice thermal conductivity and spectral phonon scattering in FeVSb-based half-heusler compounds[J]. Europhysics Letters, 2013, 104(4): 46003-46003.

【14】

ZHU T, YU G, XU J, et al. The role of electron-phonon interaction in heavily doped fine-grained bulk silicons as thermoelectric materials[J]. Advanced Electronic Materials, 2016, 2(8): 160-171.

【15】

HU L, WU H, ZHU T, et al. Tuning multiscale microstructures to enhance thermoelectric performance of N-type bismuth-telluride-based solid solutions[J]. Advanced Energy Materials, 2015, 5(17): 1-10.

【16】

VINING C B, LASKOW W, HANSON J O, et al. Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys[J]. Journal of Applied Physics, 1991, 69(8): 4333-4340.

【17】

LIU Y, XIE H, FU C, et al. Demonstration of a phonon-glass electron-crystal strategy in (Hf,Zr)NiSn half-heusler thermoelectric materials by alloying[J]. Journal of Materials Chemistry A, 2015, 3(45): 22716-22722.

【18】

PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473(7345): 66-69.

【19】

JAWORSKI C M, KULBACHINSKⅡ V, HEREMANS J P. Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power[J]. Physical Review B, 2009, 80(23):308-310.

【20】

FU C, ZHU T, LIU Y, et al. Band engineering of high performance P-type FeNbSb based half-heusler thermoelectric materials for figure of merit zT>1[J]. Energy & Environmental Science, 2015, 8(1): 216-220.

【21】

XU Z, WU H, ZHU T, et al. Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization[J]. NPG Asia Materials, 2016, 8(9): 302-307.

【22】

PAN Y, LI J F. Thermoelectric performance enhancement in N-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure[J]. Npg Asia Materials, 2016, 8(6):1-8.

【23】

DELVES R T, BOWLEY A E, HAZELDEN D W, et al. Anisotropy of the electric conductivity in bismuth telluride[J]. Proceedings of Physical Society, 1961, 78(5): 838-844.

【24】

YIM W M, ROSI F D. Compound tellurides and their alloys for peltier cooling—A review[J]. Solid State Electronics, 1972, 15(10):1121-1140.

【25】

OFFERGELD G, CAKENBERGHE J V. Stoichimetry of bismuth telluride and related compounds[J]. Nature, 1959, 184(4681): 185-186.

【26】

STARY Z, HORAK J, STORDEUR M, et al. Antisite defects in Sb2-xBixTe3 mixed crystals[J]. Journal of Physics and Chemistry of Solids, 1988, 49(1): 29-34.

【27】

ETTENBERG M H, MADDUX J R, TAYLOR P J, et al. Improving yield and performance in pseudo-ternary thermoelectric alloys (Bi2Te3)(Sb2Te3)(Sb2Se3)[J]. Journal of Crystal Growth, 1997, 179(3/4):495-502.

【28】

TAYLOR P J, MADDUX J R, JESSER W A, et al. Room-temperature anisotropic, thermoelectric and electrical properties of N-type (Bi2Te3)90(Sb2Te3)5(Sb2Se3)5 and compensated P-type (Bi2Te3)72(Sb2Te3)25(Sb2Se3)3 semiconductor alloys[J]. Journal of Applied Physics, 1999, 85(11): 7807-7813.

【29】

ZHOU Y, LI X, BAI S, et al. Comparison of space- and ground-grown Bi2Se0.21Te2.79 thermoelectric crystals[J]. Journal of Crystal Growth, 2010, 312(6): 775-780.

【30】

XIAO Y, CHEN G, QIN H, et al. Enhanced thermoelectric figure of merit in P-type Bi0.48Sb1.52Te3 alloy with WSe2 addition[J]. Journal of Materials Chemistry A, 2014, 2(22): 8512-8516.

【31】

ZHAO X B, JI X H, ZHANG Y H, et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites[J]. Applied Physics Letters, 2005, 86(6): 1665-1669.

【32】

KIM H J, HAN M K, KIM H Y, et al. Morphology controlled synthesis of nanostructured Bi2Te3[J]. Bulletin of the Korean Chemical Society, 2012, 33(12): 3977-3980.

【33】

ZHANG Y, HU L P, ZHU T J, et al. High yield Bi2Te3 single crystal nanosheets with uniform morphology via a solvothermal synthesis[J]. Crystal Growth & Design, 2013, 13(2): 645-651.

【34】

SHI W, WU F, WANG K, et al. Preparation and thermoelectric properties of yttrium-doped Bi2Te3 flower-like nanopowders[J]. Journal of Electronic Materials, 2014, 43(9): 3162-3168.

【35】

MEHTA R J, ZHANG Y, KARTHIK C, et al. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly[J]. Nature Materials, 2012, 11(3): 233-240.

【36】

XIE W, TANG X, YAN Y, et al. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys[J]. Applied Physics Letters, 2009, 94(10): 102-111.

【37】

LI J H, TAN Q, LI J F, et al. BiSbTe-based nanocomposites with high zT: the effect of SiC nanodispersion on thermoelectric properties[J]. Advanced Functional Materials, 2013, 23(35): 4317-4323.

【38】

SHEN J J, ZHU T J, ZHAO X B, et al. Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides: a simple top down route and improved thermoelectric properties[J]. Energy & Environmental Science, 2010, 3(10): 1519-1523.

【39】

ZHU T, XU Z, HE J, et al. Hot deformation induced bulk nanostructuring of unidirectionally grown P-type (Bi,Sb)2Te3 thermoelectric materials[J]. Journal of Materials Chemistry A, 2013, 1(38): 11589-11594.

【40】

XU Z J, HU L P, YING P J, et al. Enhanced thermoelectric and mechanical properties of zone melted P-type (Bi,Sb)2Te3 thermoelectric materials by hot deformation[J]. Acta Materialia, 2015, 84: 385-392.

【41】

HU L P, ZHU T J, WANG Y, et al. Shifting up the optimum figure of merit of P-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction[J]. NPG Asia Materials, 2014, 6(2): 88-96.

【42】

HU L P, ZHU T J, YUE X Q, et al. Enhanced figure of merit in antimony telluride thermoelectric materials by In-Ag Co-alloying for mid-temperature power generation[J]. Acta Materialia, 2015, 85: 270-278.

【43】

HU L, GAO H, LIU X, et al. Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects[J]. Journal of Materials Chemistry, 2012, 22(32): 16484-16490.

【44】

ZHAO L D, ZHANG B P, LI J F, et al. Enhanced thermoelectric and mechanical properties in textured N-type Bi2Te3 prepared by spark plasma sintering[J]. Solid State Sciences, 2008, 10(5): 651-658.

【45】

YAN X, POUDEL B, MA Y, et al. Experimental studies on anisotropic thermoelectric properties and structures of N-type Bi2Te2.7Se0.3[J]. Nano Letter, 2010, 10(9): 3373-3378.

【46】

LIU W S, ZHANG Q, LAN Y, et al. Thermoelectric property studies on Cu-doped N-type CuxBi2Te2.7Se0.3 nanocomposites[J]. Advanced Energy Materials, 2011, 1(4): 577-587.

【47】

HU L P, LIU X H, XIE H H, et al. Improving thermoelectric properties of N-type bismuth-telluride-based alloys by deformation-Induced lattice defects and texture enhancment[J]. Acta Materialia, 2012, 60(11): 4431-4437.

【48】

TANG Z, HU L, ZHU T, et al. High performance N-type bismuth telluride based alloys for mid-temperature power generation[J]. Journal of Materials Chemistry C, 2015, 3(40): 10597-10603.

【49】

GONZALEZ E J, BLENDELL J E, CLINE J P, et al. Texture development in Bi2Te3 during hot forging[J]. Journal of Materials Research, 2011, 13(3): 766-773.

【50】

贾建波. 热压烧结Ti-22Al-25Nb合金的微观组织与高温变形机理[D]. 哈尔滨:哈尔滨工业大学, 2014.

【51】

HU L, ZHU T, LIU X, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials[J]. Advanced Functional Materials, 2014, 24(33): 5211-5218.

【52】

SRINIVASAN R, GOTHARD N,Spowart J. Improvement in thermoelectric properties of an N-type bismuth telluride (Bi2Se0.3Te2.7) due to texture development and grain refinement during hot deformation[J]. Materials Letters, 2010, 64(16): 1772-1775.

【53】

LOTGERING F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures Ⅱ[J]. Journal of Inorganic and Nuclear Chemistry, 1960, 16(1): 100-108.

【54】

NAVRATIL J, STARY Z,PLECHACEK T. Thermoelectric properties of P-type antimony bismuth telluride alloys by cold pressing[J]. Materials Research Bulletin, 1996, 31(12): 1559-1566.

【55】

SCHULTZ J M, MCHUGH J P,TILLER W A. Effects of heavy deformation and annealing on the electrical properties of Bi2Te3[J]. Journal of Applied Physics, 1962, 33(8): 2443-2450.

【56】

JIANG G,HE J,ZHU T,et al.High performance Mg2(Si,Sn) solid solutions: a point defect chemistry approach to enhancing thermoelectric properties[J]. Advanced Functional Materials, 2014, 24: 3776-3781.

【57】

DU Z,ZHU T,CHEN Y,et al.Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions[J]. Journal of Materials Chemistry, 2012, 22(14): 6838-6844.

【58】

TOBERER E S, MAY A F,SNYDER G J. Zintl chemistry for designing high efficiency thermoelectric materials[J]. Chemistry of Materials, 2010, 22(3): 624-634.

【59】

SCANLON D O, KING P D, SINGH R P, et al. Controlling bulk conductivity in topological insulators: key role of anti-site defects[J]. Advanced Materials, 2012, 24(16): 2154-2158.

【60】

ZHU T, HU L, ZHAO X, et al. New insights into intrinsic point defects in V2VI3 thermoelectric materials[J]. Advanced Science, 2016,3(7): 1-16.

【61】

GEORGE W R, SHARPLES R,THOMPSON J E. The sintering of bismuth telluride [J]. Proceedings of The Physical Society of London, 1959, 74(6): 768-770.

【62】

KIM H J, KIM H C, HYUN D B,et al. Thermoelectric properties of p-type (Bi,Sb)2Te3 alloys fabricated by the hot pressing method[J]. Metals and Materials International, 1998, 4(1): 75-81.

【63】

ZHAO L D, ZHANG B P, LI J F, et al. Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering[J]. Physica B: Condensed Matter, 2007, 400(1/2): 11-15.

【64】

OH T S, HYUN D B, KOLOMOETS N V. Thermoelectric properties of the hot-pressed (Bi,Sb)2(Te,Se)3 alloys[J]. Scripta Materialia, 2000, 42(9): 849-854.

【65】

胡利鹏. (Bi,Sb)2(Te,Se)3合金的多尺度微观结构及其热电性能优化[D]. 杭州:浙江大学, 2015.

【66】

HASHIBON A, ELSÄSSER C. First-principles density functional theory study of native point defects in Bi2Te3[J]. Physical Review B, 2011, 84(14):2149-2157.

【67】

CHUNG D Y, HOGAN T, BRAZIS P,et al. CsBi4Te6: A high-performance thermoelectric material for low-temperature applications[J]. Science, 2000, 287(5455):1024-1024.

【68】

WANG S, TAN G, XIE W, et al. Enhanced thermoelectric properties of Bi2(Te1-xSex)3 based compounds as n-type legs for low-temperature power generation[J]. Journal of Materials Chemistry, 2012, 22(39): 20943-20951.

【69】

WANG S Y, XIE W J, LI H, et al. High performance n-type (Bi,Sb)2(Te,Se)3 for low temperature thermoelectric generator[J]. Journal of Physics D: Applied Physics, 2010, 43(33):335-404.

【70】

LIU W, LUKAS K C, MCENANEY K, et al. Studies on the Bi2Te3-Bi2Se3-Bi2S3 system for mid-Temperature thermoelectric energy conversion[J]. Energy & Environmental Science, 2013, 6(2): 552-560.

标准分享网无损检测论文频道,免费下载【高效碲化铋基热电材料中热变形诱导的多尺度微结构效应】,仅供学习使用,不得商用,如需商用请购买正版高效碲化铋基热电材料中热变形诱导的多尺度微结构效应。谢谢合作

【关键词】 热电材料 碲化铋 微结构 热变形  翟仁爽 吴业浩 朱铁军 赵新兵

猜下面文档对你有所帮助
机械工程材料论文排行