采用高能球磨-碳热氮化还原法合成了(Ti,W,Mo,Nb,Ta)(C,N)纳米固溶体粉,利用X射线衍射仪、扫描电子显微镜和元素分析仪等分析了还原温度和还原时间对粉体物相组成、晶格常数及碳氮含量的影响。结果表明:金属元素在Ti(C,N)中的固溶按难易程度排序为钽、铌、钨、钼;随还原温度的升高和还原时间的延长,固溶体粉的晶格常数、碳含量及粒径均逐渐增大;在1 500℃碳热氮化还原1 h后,可合成单相且平均粒径为100 nm的(Ti,W,Mo,Nb,Ta)(C,N)固溶体粉,其碳、氮质量分数分别为9.1%和7.2%。
所属栏目
新材料 新工艺国家自然科学基金资助项目(51371155);福建省高校产学科技重大项目(2010H6027)
收稿日期
2017/7/22017/11/2
作者单位
付明:厦门理工学院福建省功能材料及应用重点实验室, 厦门 361024厦门理工学院机械与汽车工程学院, 厦门 361024
马丽丽:厦门理工学院福建省功能材料及应用重点实验室, 厦门 361024厦门理工学院厦门市粉末冶金技术与新材料重点实验室, 厦门 361024
张厚安:厦门理工学院福建省功能材料及应用重点实验室, 厦门 361024厦门理工学院厦门市粉末冶金技术与新材料重点实验室, 厦门 361024
备注
付明(1992-),男,湖南株洲人,硕士研究生
引用该论文:
FU Ming,MA Lili,ZHANG Houan.Synthesis and Properties of (Ti,W,Mo,Nb,Ta)(C,N) Solid Solution Nano-Powders[J].Materials for mechancial engineering,2017,41(12):45~48
付明,马丽丽,张厚安.(Ti,W,Mo,Nb,Ta)(C,N)纳米固溶体粉的合成及性能[J].机械工程材料,2017,41(12):45~48
参考文献
【1】
YI C, FAN H, XIONG J,et al. Effect of WC content on the microstructures and corrosion behavior of Ti(C,N)-based cermets[J]. Ceramics International, 2013, 39(1):503-509.
【2】
孙万昌,佘晓林,张磊,等.Ti(C,N)基金属陶瓷材料的强韧化研究进展[J].热加工工艺,2014, 43(18):16-19.
【3】
朱刚,谢明,刘颖,等.Fe添加量对Ti(C,N)基金属陶瓷显微组织及力学性能的影响[J].稀有金属与硬质合金,2016,44(2):30-33.
【4】
PENG Y, MIAO H, PENG Z. Development of TiCN-based cermets:Mechanical properties and wear mechanism[J]. International Journal of Refractory Metals and Hard Materials, 2013, 39(7):78-89.
【5】
LIU Y, JIN Y, YU H, et al. Ultrafine (Ti,M)(C,N)-based cermets with optimal mechanical properties[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(1):104-107.
【6】
XIONG J, GUO Z, SHEN B, et al. The effect of WC, Mo2C, TaC content on the microstructure and properties of ultra-fine TiC0.7N0.3 cermet[J].Materials and Design, 2007, 28(5):1689-1694.
【7】
CHICARDI E, TORRES Y, CÍRDOBA J M, et al. Effect of tantalum content on the microstructure and mechanical behavior of cermets based on (TixTa1-x)(C0.5N0.5) solid solutions[J]. Materials and Design, 2014, 53:435-444.
【8】
TAMURA K, KITAMURA K, TANIGUCHI Y, et al. Microstructure and properties of cermets prepared from (Ti,W or Mo,Nb)(C,N) carbonitride solid solution powders[C]//17th International Plansee Seminar. Reutte, Austria:Plansee Holding AG, 2009:H/M1-12.
【9】
XIONG H, WEN Y, GAN X, et al. Influence of coarse TiCN content on the morphology and mechanical properties of ultrafine TiCN-based cermets[J]. Materials Science and Engineering A, 2017, 682:648-655.
【10】
WANG L, ZHANG J, JIANG W. Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials, 2013, 39(7):103-112.
【11】
WANG J. Effect of NbC on the microstructure and sinterability of Ti(C0.7,N0.3)-based cermets[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(3):549-551.
【12】
MATSUDA T, MATSUBARA H. Synthesis of titanium carbonitride nano-powder by carbothermal reduction of TiO2[J]. International Journal of Refractory Metals and Hard Materials, 2014, 42(1):1-8.
【13】
MONTEVERDE F, MEDRI V, BELLOSI A. Microstructure of hot-pressed Ti(C,N)-based cermets[J]. Journal of the European Ceramic Society, 2002, 22(14):2587-2593.
【14】
LI P, YE J, LIU Y, et al. Study on the formation of core-rim structure in Ti(CN)-based cermets[J]. International Journal of Refractory Metals and Hard Materials, 2012, 35(1):27-31.
【15】
JIN Y, LIU Y, WANG Y, et al. Study on phase evolution during reaction synthesis of ultrafine (Ti,W,Mo,V)(CN)-Ni composite powders[J]. Materials Chemistry and Physics, 2009, 118(1):191-196.
【16】
XIANG D P, LIU Y, TU M J, et al. Synthesis of nano Ti(C,N) powder by mechanical activation and subsequent carbothermal reduction-nitridation reaction[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(1):111-114.