通过对比铝合金平面直线翻边试验及基于集中性失稳模型得到的极限应变和开裂断口, 研究了汽车用铝合金滚压包边的失效机理; 基于韧性断裂、塑性增量法则和混合强化准则, 理论推导得到了弯曲成形极限图, 并通过试验对成形极限应力图进行了验证; 最后, 通过数值解析的方法, 研究了韧性断裂准则在滚边成形中的适用范围。结果表明: 基于韧性断裂准则的成形极限图, 可以用来预测铝合金滚压包边过程中产生的开裂; 包边变形过程中弯曲强化效应无法忽略, 适用于拉弯成形极限预测的集中性失稳理论将无法应用于滚压包边成形。
所属栏目
物理模拟与数值模拟上海电机学院学科基础建设项目(12XKJC02)
收稿日期
2012/11/32013/10/20
作者单位
胡星:上海电机学院 汽车学院, 上海 200245
杨海军:上海电机学院 汽车学院, 上海 200245
备注
胡星(1982-), 男, 湖北仙桃人, 讲师, 博士。
引用该论文:
HU Xing,YANG Hai-jun.Fracture Prediction of Auto-body Aluminum Alloy Sheets under Roller Hemming Process Based on Ductile Fracture[J].Materials for mechancial engineering,2014,38(2):93~97
胡星,杨海军.基于韧性断裂的汽车用铝合金板滚压包边成形开裂预测[J].机械工程材料,2014,38(2):93~97
被引情况:
【1】
雷泽红,涂元强,祝洪川,全 芳,张文颖,杨 杰, "板料成形极限曲线测试及NADDRG模型预测",机械工程材料
39, 102-106(2015)
【2】
王冠,寇琳媛,徐从昌,叶拓,李落星, "6000系铝合金薄壁结构压缩断裂行为的有限元模拟",机械工程材料
40, 73-80(2016)
参考文献
【1】
THUILLIER S, LE MAOUT N, MANACH P, et al. Numerical simulation of the roll hemming process[J].Journal of Materials Processing and Technology,2008,198:226-233.
【2】
LE MAOUT N, THUILLIER S, MANACH P. Aluminum alloy damage evolution for different strain paths-application to hemming process[J].Engineering Fracture Mechanics,2009,76:1202-1214.
【3】
KEELER S. Circular grid systems: a valuable aid for evaluation sheet forming[J].Sheet Met Ind,1969,45:633-640.
【4】
GOODWIN G. Application of strain analysis to sheet metal forming problems[J].Metalltalurgica,1968,60:767-771.
【5】
MELANDER E, SCHEDIN S, KARLSSON J, et al. A theoretical and experimental study of the forming limit diagrams of deep drawing steels, dual phase steels, austenitic and ferritic stainless steels and titanium[J].Scand J Metall,1985,14:127-148.
【6】
LIAN J, BAUDELCT B. Forming limit diagram of sheet metal in the negative minor strain region[J].Mater Sci Eng,1987,86:137-144.
【7】
YU Z, LIN Z, ZHAO Y. Evaluation of fracture limit in automotive aluminium alloy sheet forming[J].Materials and Design,2007,28:203-207.
【8】
RAGAB A. Prediction of fracture limit curves in sheet metals using a void growth and coalescence model[J].Journal of Materials Processing Technology,2008,199:206-213.
【9】
CHEN Jie-shi, ZHOU Xian-bin, CHEN Jun. Sheet metal forming limit prediction based on plastic deformation energy[J].Journal of Materials Processing Technology,2010,210:315-322.
【10】
CHIEN W, PAN J, TANG S. A combined necking and shear localization analysis for aluminum sheets under biaxial stretching conditions[J].International Journal of Plasticity,2004,20:1953-1981.
【11】
LIN G, LI J, HU S, et al. A computational response surface study of three-dimensional aluminum hemming using solid-to-shell mapping [J].Journal of Manufacturing Science and Engineering,2007,129:360-368.
【12】
王海波,万敏,吴向东,等.不同强化模型下的板料成形极限[J].机械工程学报,2007,43(8):60-65.
【13】
HU X, LIN Z, LI S, et al. Fracture limit prediction for roller hemming of aluminum alloy sheet[J].Materials and Design,2010,31:1410-1416.
【14】
KEELER S, BRAZIER W. Relationship between laboratory material characterization and press shop formability[C]//Proceedings of Microalloying. New York:[s.n],1977:517-582.
【15】
HU X, ZHAO Y, LI S, et al. Numerical simulation of ductile fracture behavior for aluminum alloy sheet under cyclic plastic deformation[J].Trans Nonferrous Met Soc China,2011,21:1595-1601.