综述了金属材料疲劳失效分析的基本过程和疲劳寿命评估方法,重点介绍了工程中常用的Miner线性累积损伤理论、能量法、弹塑性有限元法、超载迟滞模型等评估理论和模型,分析了这几种方法和模型的适用条件及优缺点。随着试验技术和计算机模拟技术的发展,假设条件将更精确,采用试验和计算机模拟技术相结合的方法预测和评估金属材料疲劳寿命是今后的发展方向。
所属栏目
综述国家自然科学基金资助项目(51379070);中国南车科技计划项目(2013NCK166)
收稿日期
2016/1/272016/12/22
作者单位
孙孝央:河海大学力学与材料学院, 南京 210098
王泽华:河海大学力学与材料学院, 南京 210098
周泽华:河海大学力学与材料学院, 南京 210098
邵佳:河海大学力学与材料学院, 南京 210098
盛欢:河海大学力学与材料学院, 南京 210098
钱坤才:中车戚墅堰机车车辆工艺研究所有限公司, 常州 213011
吴射章:中车戚墅堰机车车辆工艺研究所有限公司, 常州 213011
备注
孙孝央(1990-),女,浙江宁波人,硕士研究生。
引用该论文:
SUN Xiao-yang,WANG Ze-hua,ZHOU Ze-hua,SHAO Jia,SHENG Huan,QIAN Kun-cai,WU She-zhang.Research Status of Fatigue Life Assessment of Metal Materials[J].Materials for mechancial engineering,2017,41(2):1~7
孙孝央,王泽华,周泽华,邵佳,盛欢,钱坤才,吴射章.金属材料疲劳寿命评估的研究现状[J].机械工程材料,2017,41(2):1~7
参考文献
【1】
何柏林, 王斌. 疲劳失效预测的研究现状和发展趋势[J]. 机械设计与制造, 2012(4):279-281.
【2】
张国庆, 王成焘, 徐滨士. 几种疲劳寿命预测方法的探讨及评价[J]. 机械强度, 2011, 33(3):469-474.
【3】
牛松. 基于断裂力学的船体结构疲劳评估方法[D]. 哈尔滨:哈尔滨工程大学, 2008.
【4】
CUI W. A state-of-the-art review on fatigue life prediction methods for metal structures[J]. Journal of Marine Science and Technology, 2002, 7(1):43-56.
【5】
HARRIS T A, McCool J I. On the accuracy of rolling bearing fatigue life prediction[J]. Journal of Tribology, 1996, 118(2):297-309.
【6】
陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2001.
【7】
张晓敏,万玲,严波,等.断裂力学[M].北京:清华大学出版社,2012.
【8】
CHRISTENSEN R M. An evaluation of linear cumulative damage (Miner's law) using kinetic crack growth theory[J]. Mechanics of Time-Dependent Materials, 2002, 6(4):363-377.
【9】
MINER M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3):159-164.
【10】
赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003.
【11】
陈景杰, 黄一, 李玉刚. 考虑疲劳载荷相互影响的修正的Miner准则研究[J]. 中国造船, 2014,55(3):36-42.
【12】
鄢君辉, 魏建锋, 赵康,等. 拉-拉变幅载荷下45钢缺口件疲劳寿命分布的预测及其验证[J]. 机械工程材料, 2001, 25(7):22-25.
【13】
刘洪天, 熊峻江, 高镇同. 疲劳线性累积损伤理论的α值实验验证[J]. 力学与实践, 2002, 24(4):52-55.
【14】
舒陶, 任宏光, 郭克平. 局部应力应变Neuber法与有限元求法的比较[J]. 弹箭与制导学报, 2009, 29(1):267-269.
【15】
NEUBER H. Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law[J].Journal of Applied Mechanics,1961,28(4):544-550.
【16】
TOPPER T H, WETZEL R M, MORROW J D. Neuber's rule applied to fatigue of notched specimens:NAEC-ASL-1114[R/OL]. Philadelphia, pennsylvania:US Naval Air Engineering Center, 1967. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0659550.
【17】
吴启舟, 李江华, 缑之飞,等. 022Cr17Ni12Mo2不锈钢缺口试样的疲劳寿命预测[J]. 机械工程材料, 2015,39(12):55-58.
【18】
叶笃毅, 王德俊. 疲劳缺口系数Kf和随机疲劳寿命估算[J]. 机械强度, 2004,13(4):32-36.
【19】
ZAPPALORTO M, LAZZARIN P. A new version of the Neuber rule accounting for the influence of the notch opening angle for out-of-plane shear loads[J]. International Journal of Solids & Structures, 2009, 46(9):1901-1910.
【20】
MOLSKI K, GLINKA G. A method of elastic-plastic stress and strain calculation at a notch root[J]. Materials Science & Engineering, 1981, 50(1):93-100.
【21】
张忠平. 对估算金属切口强度的能量法与Neuber法的比较[J]. 力学与实践, 1999, 21(2):34-36.
【22】
TROSHCHENKO V T. Fatigue of metals under nonuniform stressed state. Part 2. Methods of the analysis of research results[J]. Strength of Materials, 2010, 42(3):241-257.
【23】
YE D, MATSUOKA S, SUZUKI N, et al. Further investigation of Neuber's rule and the equivalent strain energy density (ESED) method[J]. International Journal of Fatigue, 2004, 26(5):447-455.
【24】
KNOP M, JONES R, MOLENT L, et al. On the Glinka and Neuber methods for calculating notch tip strains under cyclic load spectra[J]. International Journal of Fatigue, 2000, 22(9):743-755.
【25】
尚德广, 姚卫星.随机加载下缺口局部应力应变的弹塑性有限元计算[J]. 机械强度, 2001, 23(3):332-335.
【26】
赵国宏. 缺口件多轴局部应变分析与随机疲劳寿命预测[D]. 杭州:浙江大学, 2006.
【27】
MROZ Z. An attempt to describe the behavior of metals under cyclic loads using a more general work hardening model[J]. Acta mechanica, 1969, 7(2):199-212.
【28】
JHANSALE H R. A unified approach for modeling inelastic behavior of structural metals under complex cyclic loadings:ADA040741[R/OL].[S.l.]:[s.n.], 1977. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA040741.
【29】
曹汉杰. 交变载荷下缺口根部应力-应变近似计算方法研究[D]. 上海:上海交通大学, 2011.
【30】
靳慧, 王立彬, 王金诺. 弹塑性随机有限元在低周疲劳分析中的应用[J]. 工程力学, 2004, 21(3):196-200.
【31】
肖楠, 谢基龙, 周素霞. 地铁车轮踏面制动疲劳强度评价方法及应用[J]. 工程力学, 2010, 27(9):234-239.
【32】
KOH S K. Elastic-plastic stress analysis and fatigue lifetime prediction of cross-bores in autofrettaged pressure vessels[J]. KSME International Journal, 2012, 14(9):935-946.
【33】
ELBER W. The significance of fatigue crack closure[M]//Damage Tolerance in Aircraft Structures.[S.l.]:ASTM International, 1971.
【34】
杨冰, 赵永翔, 梁红琴, 等. 基于Elber型方程的随机疲劳长裂纹扩展概率模型[J]. 工程力学, 2005, 22(5):99-104.
【35】
许天旱, 姚婷珍, 刘彦明. 珠光体-铁素体套管钻井钢疲劳裂纹扩展行为及机制[J]. 机械工程材料, 2015, 39(9):16-21.
【36】
KUJAWSKI D. Utilization of partial crack closure for fatigue crack growth modeling[J]. Engineering Fracture Mechanics, 2002, 69(12):1315-1324.
【37】
ARONE R. Influence of random overloads on fatigue crack lifetime and reliability[J]. Engineering Fracture Mechanics, 1988, 30(3):361-371.
【38】
李亚智, 耿伟杰, 束一秀, 等. 高载作用下的疲劳裂纹闭合与残余应力作用[J].西北工业大学学报,2014,32(4):529-535.
【39】
WHEELER O E. Spectrum loading and crack growth[J]. Journal of Basic Engineering, 1972, 94(1):181-186.
【40】
MURTHY A R C, PALANI G S, IYER N R. An improved Wheeler model for remaining life prediction of cracked plate panels under tensile-compressive overloading[J]. Structural Integrity & Durability, 2005, 1(3):203-214.
【41】
吕绪明, 李时磊, 王西涛,等. 铸造奥氏体不锈钢的疲劳裂纹扩展[J]. 工程科学学报, 2015(1):57-63.
【42】
MEHRZADI M, TAHERI F. A material sensitive modified wheeler model for predicting the retardation in fatigue response of AM60B due to an overload[J]. International Journal of Fatigue, 2013, 55(5):220-229.
【43】
卞如冈, 崔维成, 万正权,等. 基于双参数统一方法的深海结构物疲劳裂纹扩展影响参数研究[J]. 船舶力学, 2010(5):516-525.
【44】
邹小理. 随机超载下疲劳裂纹扩展的模拟计算[J]. 机械强度, 2005, 26(6):680-682.