采用Image-Pro Plus软件表征闭孔泡沫铝的孔结构, 在此基础上采用PolyMAX模态分析法研究了闭孔泡沫铝的模态阻尼比与孔隙率、平均孔径和固有频率之间的关系, 并通过模态置信度矩阵验证各阶试验模态的独立性。结果表明: 各阶模态之间具有较高的独立性, 泡沫铝的阻尼比随孔隙率的提高以及平均孔径的降低而呈增加的趋势, 且各阶固有频率随孔隙率的增加而降低。
所属栏目
材料性能及其应用北京科技大学新金属材料国家重点实验室科研项目(2011-Z13)
收稿日期
2015/2/202015/12/8
作者单位
陈兵:北京科技大学机械工程学院, 北京 100083
薛俊强:北京科技大学机械工程学院, 北京 100083
王辉:北京科技大学新金属材料国家重点实验室, 北京 100083
杨东辉:河海大学力学与材料学院, 南京 210098
王文瑞:北京科技大学机械工程学院, 北京 100083
备注
陈兵(1976-), 男, 湖北荆州人, 副教授, 博士。
引用该论文:
CHEN Bing,XUE Jun-qiang,WANG Hui,YANG Dong-hui,WANG Wen-rui.Damping Properties of Closed-Cell Aluminum Foam Based on PolyMAX Modal Analysis Method[J].Materials for mechancial engineering,2016,40(3):57~60
陈兵,薛俊强,王辉,杨东辉,王文瑞.基于PolyMAX模态分析法研究闭孔泡沫铝的阻尼特性[J].机械工程材料,2016,40(3):57~60
参考文献
【1】
何德坪. 超轻多孔金属[M]. 北京:科学出版社, 2007.
【2】
DEGISCHER H P, KRISZI B. Handbook of cellular metals: production, processing, applications[M]. Weinheim: Wiley VCH Verlag GmbH, 2002.
【3】
ASHBY M F, EVANS A, FLECK N A. Metals foams: a design guide[M]. Boston, MA: Butterworth Heinemann, 2000.
【4】
GIBSON L J, ASHBY M F. Cellular solids: structure and properties[M]. Cambridge: Cambridge University Press, 1997.
【5】
BANHART J. Manufacture, characterization and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001, 46(1): 559-632.
【6】
刘菊芳, 刘荣佩, 史庆南,等. 新型泡沫铝制备工艺研究[J]. 材料导报, 2002,16(8): 65-67.
【7】
吴进, 贾芬, 王蒙蒙,等. 泡沫金属的制备工艺及应用[J]. 精密成形工程, 2011, 3(3): 62-65.
【8】
YANG D H, YANG S R, WANG H, et al. Compressive properties of cellular Mg foams fabricated by melt-foaming method [J]. Materials Science and Engineering A, 2010, 527: 5405-5409.
【9】
李志武, 许金余, 范飞林,等 .采用改进的SHPB方法对闭孔泡沫铝的动态压缩性能的研究[J]. 热加工工艺, 2011, 40(6): 82-85.
【10】
石少卿, 康建功, 隋顺彬. 闭孔泡沫铝材料静动力性能试验[J]. 稀有金属材料与工程,2011, 40(2): 150-154.
【11】
曾斐, 潘艺, 胡时胜. 泡沫铝缓冲吸能评估及其特性[J]. 爆炸与冲击,2002, 22(4): 358-362.
【12】
王斌, 何德坪, 舒光翼. 泡沫Al合金的压缩性能及其能力吸收[J]. 金属学报, 2000, 36(10): 1037-1040.
【13】
BANHART J, BAUMEISTER J. Damping properties of aluminum foams[J]. Materials Science and Engineering A, 1996, 205: 221-228.
【14】
韩福生, 朱震刚. 泡沫Al阻尼性能研究[J]. 物理学报, 1998, 47(7): 1161-1169.
【15】
MU Yong-liang, YAO Guang-chun, ZU Guo-yin, et al. Influence of strain amplitude on damping property of aluminum foams reinforced with copper-coated carbon fibers[J]. Materials and Design, 2010, 31(8): 4423-4426.
【16】
LIU C S, ZHU Z G, HAN F S, et al. Study on nonlinear damping properties of foamed Al[J]. Philosophical Magazine A, 2010, 80(5): 1085-1092.
【17】
GUI M C, WANG D B, WU J J. Deformation and damping behaviors of foamed Al-Si-SiCp composite[J]. Materials Science and Engineering A, 2000,286: 282-288.
【18】
魏建宁, 杨锋涛, 潮兴兵, 等. 含宏观开孔泡沫铝的阻尼机制研究[J]. 材料导报B, 2012, 26(6): 122-124.
【19】
WEI J N, CHENG H F, GONG C L, et al. Effects of macroscopic pores on the damping behavior of foamed commercially pure aluminum[J]. Metallurgical and Materials Transactions A, 2002,33(11): 3565-3568.
【20】
WU J J, LI C G, WANG D B, et al. Damping and sound absorption properties of particle reinforced Al matrix composite foams[J]. Composites Science and Technology, 2003, 63(2): 569-574.
【21】
DAHIL L, KARABULUT A, BASPINAR S. Damping properties of open pore aluminum foams produced by vacuum casting and NaCl dissolution process[J]. Metallurgic, 2013, 52(4): 489-492.
【22】
邵国鑫, 图永清, 沈洪. 泡沫铝填充钢管构件阻尼性能的试验研究[J]. 煤矿机械, 2008, 29(2): 49-53.
【23】
DATTOMA V, GIANNOCCARO I, MESSINA A. Prediction of residual fatigue life of aluminum foam through natural frequencies and damping shift[J]. Fatigue and Fracture of Engineering Materials and Structures, 2009, 32: 601-616.
【24】
徐平, 李仲, 杨昆, 等. 泡沫铝填充结构汽车车架的动态特性模拟研究[J]. 兵器材料科学与工程, 2014, 37(1): 39-42.
【25】
魏建宁, 黄天成, 胡孔刚, 等. 泡沫铝材料的阻尼机制[J]. 机械工程材料, 2007, 31(12): 27-29.