通过拉伸试验获得T5热处理态6N01铝合金中厚板的拉伸性能和应力-应变曲线, 在此基础上采用ANSYS-LSDYNA有限元软件对其三点弯曲变形行为进行了数值模拟,并进行了试验验证。结果表明: 不同厚度铝合金板的拉伸性能不同, 且与厚度的关联性不强; 三点弯曲过程中不同节点位置的应力三轴度变化不大, 模拟得到的弯曲极限角在150°到154°之间, 与试验结果符合; 用所选的材料模型和基于应力三轴度得到的失效应变准则可以模拟铝合金中厚板的弯曲行为。
所属栏目
物理模拟与数值模拟中央高校基本科研业务专项资金项目(30920130112011); 江苏省自然科学基金资助项目(BK20131260)
收稿日期
2015/1/132016/1/18
作者单位
陈灿龙:南京理工大学材料科学与工程学院, 南京 210094
李建亮:南京理工大学材料科学与工程学院, 南京 210094
孔见:南京理工大学材料科学与工程学院, 南京 210094
备注
陈灿龙(1989-), 男, 福建泉州人, 硕士研究生。
引用该论文:
CHEN Can-long,LI Jian-liang,KONG Jian.Numerical Simulation of Three-Point Bending Behavior of 6N01 Aluminum Alloy Plate with Medium Thickness[J].Materials for mechancial engineering,2016,40(4):59~64
陈灿龙,李建亮,孔见.6N01铝合金中厚板三点弯曲变形行为的数值模拟[J].机械工程材料,2016,40(4):59~64
参考文献
【1】
朱正锋,张国荣,周斌,等.铝合金在轨道交通业的应用与展望[J].铁道机车车辆工人,2006(1): 26-29.
【2】
PAULSEN F,WELO T.Cross-sectional deformations of rectangular hollow sections in bending: part II-analytical models[J].Int J Mech Sci,2001,43(1): 131-152.
【3】
TRYLAND T,HOPPERSTAD O,LANGSETH M.Finite-element modeling of beams under concentrated loading[J].Struct Eng,2001,127(2): 176-185.
【4】
YAN J,YANG H,ZHAN M,et al.Forming limits under multi-index constraints in NC bending of aluminum alloy thin-walled tubes with large diameters[J].Science China(Technological Sciences),2010,53(2): 326-342.
【5】
金朝海,周贤宾,刁可山,等.铝合金型材拉弯成形回弹的有限元模拟[J].材料科学与工艺,2004(4): 394-397.
【6】
郭佳.基于数值模拟的铝合金矩形管变形回弹问题研究[J].铸造技术,2014(12): 3003-3004.
【7】
沈豪.地铁列车转向架构架开裂的失效分析[J].机械工程材料,2013,37(3): 103-106.
【8】
郭琳.浅析铝合金失效机理[J].中国新技术新产品,2014(12): 46-46.
【9】
姜伟,段安婧.7075铝合金缸体的失效分析[J].机械工程材料,2012,36(6): 94-96.
【10】
强斌,刘宇杰,阚前华.粘接界面泡沫铝夹芯板的三点弯曲失效数值模拟[J].材料工程,2014(11): 97-101.
【11】
于立,刘志文,李落星,等.挤压-弯曲一体化成型铝合金弯曲型材的质量与性能[J].机械工程材料,2012,36(7): 72-76.
【12】
朱浩, 朱亮, 陈剑虹. 铝合金在三种应力状态下的力学性能研究及断口分析[J]. 兰州理工大学学报, 2006, 32(6): 28-31.
【13】
汤安民,刘泽明.铝合金材料断裂形式变化规律的试验分析[J].西安理工大学学报,2003,19(3): 226-229.
【14】
AGARWAL H,GOKHALE A M,GRAHAM S.Void growth in 6061-aluminum alloy under triaxial stress state[J].Materials Science and Engineering: A,2003,341(1/2): 35-42.
【15】
刘洲,何玉怀,刘昌奎,等.ZL101铝合金的拉伸断裂特征[J].机械工程材料,2014,38(2): 82-86.
【16】
BAO Y,WIERZBICKI T.On fracture locus in the equivalent strain and stress triaxiality space[J].Int J Mech Sci,2004,46(1): 81-98.
【17】
戴谋军.铝合金管材压弯过程数值模拟研究[D].长沙: 湖南大学,2008: 34-38.
【18】
白梅杉,陆彬,崔振山.矩形截面铝型材弯曲成形特性分析[J].塑性工程学报,2013,20(3): 55-59.
【19】
胡世光.钣料冷压成形的工程解析[M].北京: 北京航空航天大学出版社,2009: 74-78.
【20】
胡丽华,傅旻,樊新乾,等.板料弯曲成形性能的有限元模拟研究[J].模具工业,2013,39(1): 25-39.
【21】
陈劼实,周贤宾,刘长丽.数值模拟中应用最小厚度准则预测板料成形极限[J].中国机械工程,2006(s1): 67-70.
【22】
JOHNSON G R,COOK W H.Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J].Engineering Fracture Mechanics,1985,21(1): 31-48.
【23】
吴彦骏,庄新村,赵震.不同应力状态下45钢断口形貌分析[J].塑性工程学报,2013,20(3): 106-110.
【24】
湛利华,李杰,黄明辉.2524铝合金的蠕变时效行为及本构方程[J].机械工程材料,2013,37(5): 92-96.
【25】
刘志文,周阳,王冠,等.铝合金汽车前碰撞横梁拉弯成形回弹量的有限元模拟[J].机械工程材料,2010,34(12): 84-88.