为研究铝基复合材料中新发现的以熔化为主要特征的相变带,采用分离式霍普金森压杆(SHPB)和光学显微镜(OM)、扫描电镜(SEM)等研究了不同应变速率(7×10
-4~2×10
3s
-1)下55%TiB
2颗粒增强铝基复合材料中绝热剪切带的组织特征。结果表明:在(1~2)×10
3s
-1的高应变速率下,在与加载方向呈45°的剪切面上存在熔融铝带或熔融铝球团聚区,即相变带;相变带的形成与绝热温升有关,在绝热温升的作用下基体合金于高温下熔化,急冷后形成了相变带;试验用铝基复合材料的绝热剪切失效主要受热软化效应的控制。
所属栏目
材料性能及应用广东省自然科学基金资助项目(2015A030313668);广东省科技计划项目(2016A010103006);东莞市产学研合作项目(2015509102214)
收稿日期
2015/12/292017/1/20
作者单位
郑振兴:广东技术师范学院机电工程系, 广州 510665
朱德智:华南理工大学机械与汽车工程学院, 广州 510640
备注
郑振兴(1975-),男,福建福州人,副教授,博士.
引用该论文:
ZHENG Zhen-xing,ZHU De-zhi.Microstructure Characteristic of Adiabatic Shear Band in 55vol% TiB2 Particles Reinforced Aluminum Matrix Composite at High Strain Rates[J].Materials for mechancial engineering,2017,41(4):84~88
郑振兴,朱德智.高应变速率下55%TiB2颗粒增强铝基复合材料绝热剪切带的组织特征[J].机械工程材料,2017,41(4):84~88
参考文献
【1】
TENG X, WIERZBICKI T, COUQUE H. On the transition from adiabatic shear banding to fracture[J]. Mechanics of Materials, 2007, 39: 107-125.
【2】
BEISSEL S R, GERLACH C A, JOHNSON G R. Hypervelocity impact computations with finite elements and mesh free particles[J]. International Journal of Impact Engineering, 2006, 33: 80-90.
【3】
ZHENG C, WANG F C, CHENG X W, et al. Failure mechanisms in ballistic performance of Ti-6Al-4V targets having equiaxed and lamellar microstructures[J]. International Journal of Impact Engineering, 2015, 85: 161-169.
【4】
LI D H, YANG Y, XU T, et al. Observation of the microstructure in the adiabatic shear band of 7075 aluminum alloy[J]. Mater Sci Eng A, 2010, 527: 3529-3535.
【5】
MURR L E, RAMIREZ A C, GAYTAN S M, et al. Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti6Al4V targets[J]. Mater Sci Eng A, 2009, 516: 205-216.
【6】
ZHU D Z, ZHENG Z X, CHEN Q. Adiabatic shear failure of aluminum matrix composites and microstructural characteristics of transformed bands[J].Materials Science & Engineering A, 2014, 595: 241-246.
【7】
CHICHILI D R, RAMESH K T, HEMKER K J. Adiabatic shear localization in titanium: Experiments, modeling and micro structural evolution[J]. J Mech Phys Solids, 2004, 52: 1889-1909.
【8】
ZHU D Z, CHEN G Q, WU G H, et al. Hypervelocity impact damage to Ti-6Al-4V meshes reinforced Al-6Mg alloy matrix composites[J]. Mater Sci Eng A, 2009, 500: 43-46.
【9】
ZHANG H, YE J, JOSHI S P, et al. Rate-dependent behavior of hierarchical Al matrix composites[J]. Scripta Mater, 2008, 59: 1139-1142.
【10】
BEHM N, YANG H, SHEN J H. Quasi-staic and high-rate mechanical behavior of aluminum-based MMC reinforced with boron carbide of various length scales[J]. Mater Sci Eng A, 2016, 650: 305-316.
【11】
ZHU D Z, ZHENG Z X, CHEN Q. Strain-rate sensitivity of aluminum 2024-T6-TiB2 composites and aluminum 2024-T6[J]. Journal of Wuhan University of Technology(Mater Sci Ed), 2015, 30(2): 256-260.
【12】
LI D H, YANG Y, XU T, et al. Observation of the microstructure in the adiabatic shear band of 7075 aluminum alloy [J]. Materials Science & Engineering A, 2010, 527: 3529-3535.
【13】
LIU Y X, YANG C, CHEN W P, et al. Effects of particle size and properties on the microstructures, mechanical properties and fracture mechanisms of 7075Al hybrid composites prepared by squeeze casting[J]. Journal of Materials Science, 2014, 49(22): 7855-7863.
【14】
ZHU D Z, CHEN Q, MA Z J. Impact behavior and damage characteristics of hybrid composites reinforced by Ti fibers and M40 fibers[J]. Materials and Design, 2015, 76: 196-201.