鉴于颗粒增强钛基复合材料在提高强度的同时会引起塑韧性的下降,借鉴性能优异生物材料的叠层微观结构,利用粉末冶金结合热加工工艺(热锻+退火)的方法,制备了增强体体积分数为5%~15%的原位合成层状Ti-(TiB+TiC)/Ti复合材料,并对其组织和力学性能进行了研究。结果表明:复合材料组织完全致密化,复合层中团聚的增强体被分散,纯钛层α晶粒沿锻造方向排列;复合材料的室温抗拉强度较纯钛的提高近一倍,退火后其伸长率明显提升;随增强体体积分数的增加,复合材料的强度稍有提高,但塑性下降较为明显,增强体体积分数为5%的复合材料具备优异的综合力学性能,与增强体体积分数为15%的复合材料相比,强度仅降低了4%,但伸长率却增加了3.8倍。
所属栏目
试验研究国家自然科学基金资助项目(51371114,51501112);中国博士后基金资助项目(2014M550235,2015T80431);上海博士后基金资助项目(14R21410900)
收稿日期
2015/11/162017/3/15
作者单位
段宏强:上海交通大学, 金属基复合材料国家重点实验室, 上海 200240
韩远飞:上海交通大学, 金属基复合材料国家重点实验室, 上海 200240
吕维洁:上海交通大学, 金属基复合材料国家重点实验室, 上海 200240
王立强:上海交通大学, 金属基复合材料国家重点实验室, 上海 200240
毛建伟:上海交通大学, 金属基复合材料国家重点实验室, 上海 200240
张荻:上海交通大学, 金属基复合材料国家重点实验室, 上海 200240
备注
段宏强(1991-),男,安徽亳州人,硕士研究生.
引用该论文:
DUAN Hongqiang,HAN Yuanfei,LÜ,Weijie,WANG Liqiang,MAO Jianwei,ZHANG Di.Microstructure and Mechanical Properties of In-situ Fabricated Laminated Ti-(TiB+TiC)/Ti Composites[J].Materials for mechancial engineering,2017,41(5):17~21
段宏强,韩远飞,吕维洁,王立强,毛建伟,张荻.原位合成层状Ti-(TiB+TiC)/Ti复合材料的组织与力学性能[J].机械工程材料,2017,41(5):17~21
参考文献
【1】
ZHANG Z G, QIN J N, ZHANG Z W,et al. Effect of β heat treatment temperature on microstructure and mechanical properties of in situ titanium matrix composites[J]. Material Design, 2010, 31(9):4269-4273.
【2】
WANG J H, GUO X L, QIN J N, et al. Microstructure and mechanical properties of investment casted titanium matrix composites with B4C additions[J]. Material Science & Engineering A, 2015, 628:366-373.
【3】
ZHANG C J, KONG F T, XIAO S L,et al. Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB+TiC) reinforcements[J]. Material Science & Engineering A, 2012, 548:152-160.
【4】
ZHANG Z G, QIN J N, ZHANG Z W, et al. Microstructure effect on mechanical properties of in situ synthesized titanium matrix composites reinforced with TiB and La2O3[J]. Mater Letters, 2010, 64(3):361-363.
【5】
KOBAYASHI M, FUNAMI K, SUZUKI S, et al. Manufacturing process and mechanical properties of fine TiB dispersed Ti-6Al-4V alloy composites obtained by reaction sintering[J]. Material Science & Engineering A, 1998, 243:279-284.
【6】
FAN Z, MIODOWNIK A P. Microstructural evolution in rapidly solidified Ti-7.5Mn-0.5B alloy[J].Acta Materialia, 1996, 44(1):93-110.
【7】
GODFREY T M T, WISBEY A, GOODWIN P S, et al. Microstructure and tensile properties of mechanically alloyed Ti-6A1-4V with boron additions[J]. Material Science & Engineering A, 2000, 282:240-250.
【8】
LI B S, SHANG J L, GUO J J, et al. In situ observation of fracture behavior of in situ TiBw/Ti composites[J]. Material Science & Engineering A, 2004, 383:316-322.
【9】
吕维洁. 原位自生钛基复合材料研究综述[J]. 中国材料进展, 2010, 29(4):41-48.
【10】
YAN Z Q, CHEN F, CAI Y X,et al. Microstructure and mechanical properties of in-situ synthesized TiB whiskers reinforced titanium matrix composites by high-velocity compaction[J]. Powder Technology, 2014, 267:309-314.
【11】
刘钊, 吕维洁, 卢俊强, 等. 原位合成(TiB+TiC)/Ti-8Al-1Mo-1V复合材料的显微组织和室温力学性能[J].机械工程材料, 2009, 33(5):1-4.
【12】
CLEGG W J, KENDALL K, ALFORD N M, et al. A simple way to make tough ceramics[J]. Nature, 1990, 347:455-457.
【13】
HAN Y F, LI J X, HUANG G F, et al. Effect of ECAP numbers on microstructure and properties of titanium matrix composite[J]. Materials & Design, 2015, 75:113-119.
【14】
MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials[J]. Progress in Materials Science, 2006, 51(4):427-556.
【15】
LU K. The future of metals[J]. Science, 2010, 328:319-320.
【16】
PANDEY A B, MAJUMDAR B S, MIRACLE D B. Laminated particulate-reinforced aluminum composites with improved toughness[J].Acta Materialia, 2001, 49(3):405-417.
【17】
LIU B X, HUANG L J, GENG L, et al. Microstructure and tensile behavior of novel laminated Ti-TiBw/Ti composites by reaction hot pressing[J]. Material Science & Engineering A, 2013, 583:182-187.
【18】
ROHATGI A, HARACH D J, VECCHIO K S, et al. Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites[J]. Acta Materialia, 2003, 51(10):2933-2957.
【19】
HAN Y F, DUAN H Q, LU W J, et al. Fabrication and characterization of laminated Ti-(TiB+La2O3)/Ti composite[J]. Progress in Natural Science:Materials International, 2015, 25(5):453-459.
【20】
吕维洁, 郭相龙, 王立强, 等. 原位自生非连续增强钛基复合材料的研究进展[J]. 航空材料学报, 2014, 34(4):139-146.
【21】
JIA L, LI S F, IMAI H, et al. Size effect of B4C powders on metallurgical reaction and resulting tensile properties of Ti matrix composites by in-situ reaction from Ti-B4C system under a relatively low temperature[J]. Material Science & Engineering A, 2014, 614:129-135.
【22】
XU C, ZHU W F. Comparison of microstructures and mechanical properties between forging and rolling processes for commercially pure titanium[J]. Transaction of Nonferrous Metals Society of China, 2012, 22(8):1939-1946.
【23】
MOSKALENKO V A, SMIRNOV A R. Temperature effect on formation of reorientation bands in α-Ti[J].Material Science & Engineering A, 1998, 246:282-288.
【24】
LIU B X, HUANG L J, GENG L, et al. Fabrication and superior ductility of laminated Ti-TiBw/Ti composites by diffusion welding[J]. Journal of Alloys & Compounds, 2014, 602(10):187-192.