对铸态Mg-6Gd-3Y-1Zn-0.5Zr合金在510 ℃进行不同保温时间的均匀化退火处理, 之后再在450 ℃下进行1~5道次的轧制, 研究了均匀化退火时间和轧制道次对合金组织及拉伸性能的影响。结果表明: 与退火12 h的合金相比, 退火40 h合金中片层状LPSO相的数量明显增多, 这导致其强度和塑性较低; 随着轧制道次增加, 合金中的再结晶体积分数增大, 合金的强度和塑性逐渐提高; 合金在510 ℃退火40 h后再经5道次轧制后具有最佳的拉伸性能, 屈服强度为271 MPa, 抗拉强度为340 MPa, 伸长率为9.0%。
所属栏目
试验研究
收稿日期
2015/6/232016/4/27
作者单位
宫敏利:湖南财经工业职业技术学院, 衡阳 421001
刘楚明:中南大学材料科学与工程学院, 长沙 410083
周小杰:中南大学材料科学与工程学院, 长沙 410083
备注
宫敏利(1981-), 女, 陕西户县人, 讲师, 硕士。
引用该论文:
GONG Min-li,LIU Chu-ming,ZHOU Xiao-jie.Effects of Homogenization Annealing Time and Rolling Passes on Microstructure and Tensile Properties of Mg-Gd-Y-Zn-Zr Alloy[J].Materials for mechancial engineering,2016,40(7):13~17
宫敏利,刘楚明,周小杰.均匀化退火时间和轧制道次对镁钆钇锌锆合金组织及拉伸性能的影响[J].机械工程材料,2016,40(7):13~17
参考文献
【1】
陈振华. 镁合金[M]. 北京: 化学工业出版社, 2004: 310-316.
【2】
刘龙飞, 姜炳春, 赵俊, 等. 冲击载荷下AZ31镁合金的变形行为和组织演变[J]. 机械工程材料, 2015, 39(1): 24-27.
【3】
张蓉, 罗裴. AZ61镁合金的热压缩变形行为及组织演变[J]. 机械工程材料, 2014, 38(8): 11-15.
【4】
YOSHIHITO K, KENTARO H, AKIHISA I, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600MPa[J]. Materials Transaction, 2001, 42: 1172-1176.
【5】
XU C, ZHENG M Y, XU S W, et al. Ultra high-strength Mg-Gd-Y-Zn-Zr alloy sheets processed by large-strain hot rolling and ageing[J]. Materials Science & Engineering A, 2012, 547: 93-98.
【6】
郑梁. Zn及变形工艺对Mg-6Gd-3Y-0.5Zr微观组织、织构及力学性能的影响[D]. 长沙: 中南大学, 2012.
【7】
张松, 袁广银, 卢晨, 等. 长周期结构增强镁合金的研究进展[J].材料导报, 2008, 22(2): 61-63.
【8】
高岩. Mg-Gd-Y-Zn-Zr镁合金组织、性能及其蠕变行为研究[D]. 上海: 上海交通大学, 2009.
【9】
HAGIHARA K, YOKOTANI N, UMAKOSHI Y. Plastic deformation behavior of Mg12YZn with 18R long-period ordered structure[J]. Intermetallics, 2010, 18: 267-276.
【10】
ZHU Y M, MORTON A J, NIE J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J]. Acta Materialia, 2010, 58(8): 2936-2947.
【11】
ZHU Y M, MORTON A J, NIE J F. Growth and transformation mechanisms of 18R and 14H in Mg-Y-Zn alloys[J]. Acta Materialia, 2012, 60(19): 6562-6572.
【12】
XU S W, KAMADO S, HONMA T. Effect of homogenization on microstructures and mechanical properties of hot compressed Mg-9Al-1Zn alloy[J]. Materials Science & Engineering A, 2011, 528: 2385-2393.
【13】
SHAO X H, YANG Z Q, MA X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure[J]. Acta Materialia, 2010, 58(14): 4760-4771.
【14】
MICHIAKI Y, KENJI H, KOJI H, et al. Effect of multimodal microstructure evolution on mechanical properties of Mg-Zn-Y extruded alloy[J]. Acta Materialia, 2011, 59: 3646-3658.
【15】
XU C, ZHENG M Y, XU S W, et al. Microstructure and mechanical properties of rolled sheets of Mg-Gd-Y-Zn-Zr alloy: as-cast versus as-homogenized[J]. Journal of Alloys and Compounds, 2012, 528: 40-44.
【16】
MATSUDA M, LI S, KAWAMURA Y, et al. Interaction between long period stacking order phase and deformation twin in rapidly solidified Mg97Zn1Y2 alloy[J]. Materials Science & Engineering A, 2004, 386: 447-452.