从宏观唯象方面和微细观方面系统地介绍了国内外对TiAl金属间化合物材料本构模型的研究进展。在宏观唯象方面, 主要介绍了Arrhenius方程和Zener-Hollomon参数在描述TiAl金属间化合物高温流变行为方面的应用, 以及Z-A模型在描述TiAl金属间化合物在高温、高应变速率下流变行为方面的应用; 在微细观方面, 主要介绍了国内外基于TiAl金属间化合物的微细观结构特征和变形机理等, 以及运用晶体塑性理论和有限元分析建立的微细观预测模拟模型。
所属栏目
综述国家自然科学基金资助项目(51205190); 中央高校基本科研业务费专项资金资助项目(NZ2012113)
收稿日期
2012/5/242013/3/29
作者单位
张宏建:南京航空航天大学 能源与动力学院, 南京 210016
温卫东:南京航空航天大学 能源与动力学院, 南京 210016南京航空航天大学 机械结构强度与振动国家重点实验室, 南京 210016
崔海涛:南京航空航天大学 能源与动力学院, 南京 210016
备注
张宏建(1980—), 男, 江苏如皋人, 副教授, 博士。
引用该论文:
ZHANG Hong-jian,WEN Wei-dong,CUI Hai-tao.Progress in Research of Constitutive Models of TiAl Intermetallic Materials[J].Materials for mechancial engineering,2013,37(7):1~5
张宏建,温卫东,崔海涛.TiAl金属间化合物材料本构模型的研究进展[J].机械工程材料,2013,37(7):1~5
被引情况:
【1】
张钦差,陈明和,欧阳金栋,雷晓晶,吴亚凤, "Ti2AlNb合金的高温拉伸变形行为",机械工程材料
40, 68-72(2016)
参考文献
【1】
YAMAGUCHI M. High temperatures structural intermetallics[J].Acta Mater, 2000, 48: 307-322.
【2】
王刚, 徐磊, 崔玉友, 等.粉末冶金TiAl基合金高温变形行为及其本构模型[J].中国有色金属学报, 2010, 20(1): 269-273.
【3】
ZHANG W, LIU Y, LI H Z, et al. Constitutive modeling and processing map for elevated temperature flow behaviors of a powder metallurgy titanium aluminide alloy[J].Journal of Materials Processing Technology, 2009, 209: 5363-5370.
【4】
司家勇, 韩鹏彪, 张继.Ti-46.5Al-2.5V-1.0Cr-0.3Ni合金高温锻造本构模型研究[J].锻压技术, 2009, 34(5): 121-125.
【5】
高帆, 王新英, 王磊, 等.工业尺寸TiAl合金铸锭高温变形行为[J].塑性工程学报, 2010, 17(4): 104-109.
【6】
付明杰, 静永娟, 张继.挤压开坯γTiAl 合金的热变形行为研究[J].材料工程, 2011(5): 62-65.
【7】
李慧中, 李洲, 刘咏, 等. TiAl 基合金的高温塑性变形行为[J].中国有色金属学报, 2010, 20(1): 79-85.
【8】
CHEN Yu-yong, YANG Fei, KONG Fan-tao, et al. Constitution modeling and deformation behavior of yttrium bearing TiAl alloy[J].Journal of Rare Earths, 2011, 29(2): 114-118.
【9】
JOHSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]// Proceedings of the Seventh International Symposium on Ballistics. Hague, Netherlands: [s.n.], 1983: 541-547.
【10】
ZERILLI F J, ARMSTRONG R W. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations [J].J Appl Phys, 1990, 68(4): 1580-1591.
【11】
ZERILLI F J, ARMSTRONG R W. Dislocation mechanics based constitutive relations for material dynamics calculations [J].J Appl Phys, 1987, 61(5): 1816-1825.
【12】
FOLLANSBEE P S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [J].Acta Metall, 1988, 36(1): 81-93.
【13】
ZAN Xiang, HE Yue-hui, WANG Yang, et al. Tensile impact behavior and deformation mechanism of duplex TiAl intermetallics at elevated temperatures[J].Journal of Materials Science, 2010, 45: 6446-6454.
【14】
VOYIADJIS G Z, ABED F H. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency[J].Mechanics of Materials, 2005, 37: 355-378.
【15】
ABED F H, VOYIADJIS G Z. A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperatures [J].Acta Mechanica, 2005, 175: 1-18.
【16】
ZHANG Hong-jian, WEN Wei-dong, CUI Hai-tao, et al. A modified Zerilli-Armstrong model for alloy IC10 over a wide range of temperatures and strain rates[J].Materials Science & Engineering A, 2009, 527: 328-333.
【17】
LIN Y C, CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J].Materials and Design, 2011, 32: 1733-1759.
【18】
ASARO R J. Crystal plasticity [J].Journal of Applied Mechanics, 1983, 50: 921-934.
【19】
PARTEDER E, SIGMUND T, FISCHER F D, et al. Numerical simulation of the plastic behavior of polysynthetically twinned Ti-Al crystals[J].Mater Sci Eng A, 1995, 192/193: 149-154.
【20】
ZAMBALDI C, RAABE D. Plastic anisotropy of γ-TiAl revealed by axisymmetric indentation[J].Acta Materialia, 2010, 58: 3516-3530.
【21】
ZAMBALDI C, RAABE D. Crystal plasticity modelling and experiments for deriving microstructure-property relationships in γ-TiAl based alloys[J].Journal of Physics: Conference Series, 2010, 240: 1-4.
【22】
DAO M, KAD B K, ASARO R J. Deformation and fracture under compressive loadingin lamellar TiAl microstructures[J].Philos Mag A, 1996, 74(3): 569-591.
【23】
KAD B K, DAO M, ASARO R J. Numerical simulations of plastic deformation and fracture effects in two phase γ-TiAl and a2-Ti3Al lamellar microstructures[J].Philos Mag A, 1995, 71(3): 567-604.
【24】
KAD B K, DAO M, ASARO R J. Numerical simulations of stress-strain behavior in two phase α2+γ lamellar TiAl alloys[J].Mater Sci Eng A, 1995, 192/193: 97-103.
【25】
KAD B K, ASARO R J. Apparent Hall-Petch effects in polycrystalline lamellar TiAl[J].Philos Mag A, 1997, 75(1): 87-104.
【26】
ROBERT A, BROCKMAN. Analysis of elastic-plastic deformation in TiAl polycrystals[J].International Journal of Plasticity, 2003, 19: 1749-1772.
【27】
SCHLLGL S M, FISCHER F D.Micromechanical modelling of TiAl intermetallics[J].Compos Mater Sci, 1996, 7: 34-39.
【28】
SCHLLGL S M, FISCHER F D. The role of slip and twinning in the deformation behaviour of polysynthetically twinned crystals of TiAl: a micromechanical model[J].Philos Mag A, 1997, 75(3): 621-636.
【29】
SCHLLGL S M, FISCHER F D. Numerical simulation of yield loci for PST crystals of TiAl[J].Mater Sci Eng A 1997, 239/240: 790-803.
【30】
WERWER, CORNEE A. Numerical simulation of plastic deformation and fracture in polysynthetically twinned (PST) crystals of TiAl[J].Computational Materials Science, 2000, 19: 97-107.