以孔隙率为43%~58%的多孔Ti-51% Ni(原子分数)合金为研究对象,研究了其微观形貌、物相组成和相变特征,以及在不同压缩载荷下的压缩回弹性能,分析了其变形机制。结果表明:试验合金的孔隙分布比较均匀,孔隙率对其相组成和相变行为影响很小;在不同压缩载荷下存在线性超弹和平台锯齿两种变形机制;在线性超弹阶段,试验合金同时具备较高的压缩率和回弹率;在平台锯齿阶段,回弹能力几乎丧失。
所属栏目
材料性能及应用江苏省自然科学基金资助项目(BK20131411);江苏省“六大人才高峰”高层次人才选拔培养人选资助项目(2015ZBZZ013)
收稿日期
2016/6/22017/5/3
作者单位
王超杰:南京工业大学机械与动力工程学院, 南京 211816
陆晓峰:南京工业大学机械与动力工程学院, 南京 211816
李刚:南京工业大学机械与动力工程学院, 南京 211816
刘路维:南京工业大学机械与动力工程学院, 南京 211816
朱晓磊:南京工业大学机械与动力工程学院, 南京 211816
涂善东:华东理工大学机械与动力工程学院, 上海 200237
备注
王超杰(1990-),男,河南焦作人,硕士研究生
引用该论文:
WANG Chaojie,LU Xiaofeng,LI Gang,LIU Luwei,ZHU Xiaolei,TU Shantung.Compression and Recovery Property of Porous Ti-51%Ni Alloy[J].Materials for mechancial engineering,2017,41(6):39~43
王超杰,陆晓峰,李刚,刘路维,朱晓磊,涂善东.多孔Ti-51%Ni合金的压缩回弹性能[J].机械工程材料,2017,41(6):39~43
参考文献
【1】
徐然,罗丰华,王铸博. 不同温度淬火后Co39Ni34Al27形状记忆合金的组织与性能[J]. 机械工程材料,2016,40(5):62-66.
【2】
高翾,党富科,陈义安,等. 一种消除形状记忆合金弹簧局部超弹性的方法[J]. 机械工程材料,2014,38(6):46-49.
【3】
TANAKA T, TAKADA T, KAWAMURA S, et al. Spiral-shaped gasket using shape memory:JP04249587[P]. 1994-04-12.
【4】
TATSUOKA T, TAKAGI Y, SAWA T. Sealing performance of pipe flange connections with shape memory alloy gaskets under internal pressure[C]//ASME/JSME 2004 Pressure Vessels and Piping Conference. New York:ASME,2004:41-47.
【5】
TAKAGI Y, TATSUOKA T, KAWASAKI N, et al. Stress analysis and sealing performance of pipe flange connections with NiTi shape memory alloy gasket[C]//ASME 2007 Pressure Vessels and Piping Conference. New York:ASME, 2007:209-216.
【6】
TAKAGI Y, TATSUOKA T, SAWA T. The effect of the thermal expansion coefficient on the sealing performance of pipe flange connections with Ni-Ti shape memory alloy gaskets[C]//ASME 2006 Pressure Vessels and Piping Conference. New York:ASME, 2006:161-168.
【7】
EFREMOV A. Bolted flanged connection for critical engineering applications[C]//ASME 2006 Pressure Vessels and Piping Conference. New York:ASME, 2006:103-110.
【8】
诸士春,陆晓峰,巩建鸣. Al包覆层厚度对Al-NiTi复合垫片密封面压紧力影响的有限元分析[J]. 固体火箭技术,2012,35(5):683-687.
【9】
XIONG J Y, LI Y C, WANG X J, et al. Titanium-nickel shape memory alloy foams for bone tissue engineering[J]. Journal of the Mechanical Behavior of Biomedical Materials,2008, 1(3):269-273.
【10】
ISMAIL M H, GOODALL R, DAVIES H A, et al. Formation of microporous NiTi by transient liquid phase sintering of elemental powders[J]. Materials Science and Engineering C,2012, 32(6):1480-1485.
【11】
XU J L, BAO L Z, LIU A H, et al. Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering[J]. Journal of Alloys and Compounds,2015, 645:137-142.
【12】
袁斌,赖铭,梁锦霞,等. 烧结时间对多孔NiTi形状记忆合金时效时马氏体相变的影响[J]. 机械工程材料,2011,35(1):6-10.
【13】
YUAN B, ZHANG X P, CHUNG C Y, et al. The effect of porosity on phase transformation behavior of porous Ti-50.8at.% Ni shape memory alloys prepared by capsule-free hot isostatic pressing[J]. Materials Science and Engineering A,2006, 438/439/440:585-588.
【14】
ZHU S, LU X, GONG J. Study on the compressive behavior of Ti-53.22at%Ni alloy sheets after pre-compression and aging treatments[J]. Journal of Alloys and Compounds, 2012, 543(35):34-39.
【15】
CHU C, CHUNG J, CHU P. Effects of heat treatment on characteristics of porous Ni-rich NiTi SMA prepared by SHS technique[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(1):49-53.
【16】
ZHANG X P, LIU H Y, YUAN B, et al. Superelasticity decay of porous NiTi shape memory alloys under cyclic strain-controlled fatigue conditions[J]. Materials Science and Engineering A, 2008, 481/482:170-173.
【17】
GIBSON L J, ASHBY M F. Cellular solids:Structure and properties (Second Edition)[M]. New York:Cambridge University Press, 1997.