返回顶部
位置:标准分享网>机械工程材料论文>先进高强度钢氢脆的研究进展
先进高强度钢氢脆的研究进展
  • 资料大小:

  • 更新时间:

    2014-03-10

  • 授权方式:

    共享学习

  • 资料格式:

    PDF

  • 软件等级:

  • 官方主页:

    http://www.ndt88.com

资料简介

综述了先进高强度钢氢脆的研究进展, 重点介绍了双相钢、相变诱发塑性钢、孪生诱发塑性钢、淬火-配分钢等材料中的氢脆特征、断裂模式、断口形貌特点以及相关的断裂机制, 为揭示先进高强度钢的氢脆机理及提出相应的预防措施提供参考。

所属栏目

综述国家自然科学基金重点(51031001)和面上(51071101)资助项目

收稿日期

2014/3/102015/4/1

作者单位

罗洁:上海交通大学材料科学与工程学院, 上海 200240
郭正洪:上海交通大学材料科学与工程学院, 上海 200240
戎咏华:上海交通大学材料科学与工程学院, 上海 200240

备注

罗洁(1989-), 男, 湖南岳阳人, 硕士研究生。

引用该论文:

LUO Jie,GUO Zheng-hong,RONG Yong-hua.Research Progress on Hydrogen Embrittlement in Advanced High Strength Steels[J].Materials for mechancial engineering,2015,39(8):1~9
罗洁,郭正洪,戎咏华.先进高强度钢氢脆的研究进展[J].机械工程材料,2015,39(8):1~9


参考文献

【1】

徐祖耀.自主创新发展超高强度钢[J].上海金属,2009,31(2): 1-6.

【2】

徐祖耀.我国应尽早发展高强度钢[C]//中国工程院化工,冶金与材料工程学部第六届学术会议论文集.北京: 化学工业出版社,2007: 403-406.

【3】

马鸣图,易红亮,路洪洲,等.论汽车轻量化[J].中国工程科学,2009,11(9): 20-27.

【4】

马鸣图,易红亮.高强度钢在汽车制造中的应用[J].热处理,2011, 26(6): 9-20.

【5】

张柯,许为宗,郭正洪,等.新型QPT和传统QT工艺对不同C含量马氏体钢组织和力学性能的影响[J].金属学报,2011,47(4): 489-496.

【6】

JOHNSON W H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids[J]. Proceedings of the Royal Society of London, 1874, 23(156/163 ): 168-179.

【7】

褚武扬.氢损伤和滞后断裂[M].北京: 冶金工业出版社,1988.

【8】

LOIDL M, KOLK O, VEITH S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels[J]. Materialwissenschaft und Werkstofftechnik, 2011, 42(12): 1105-1110.

【9】

BLECK W, PHIU-ON K. Microalloying of cold-formable multi phase steel grades[J]. Materials Science Forum, 2005, 500/501: 97-114.

【10】

马鸣图,吴宝榕.双相钢-物理和力学冶金[M].北京: 冶金工业出版社,1988.

【11】

田志强,唐荻,江海涛,等.汽车用双相钢的研究与生产现状[J].机械工程材料,2009, 33(4): 1-5.

【12】

DAVIES R G. Hydrogen embrittlement of dual-phase steels[J]. Metallurgical Transactions: A,1981, 12(9): 1667-1672.

【13】

寿大云,王天宰,陈南平.双相钢的氢脆特性和断裂特征[J].兵器材料科学与工程,1987( 5): 1-7.

【14】

FUCHIGAMI H, MINAMI H,NAGUMO M. Effect of grain size on the susceptibility of martensitic steel to hydrogen-related failure[J].Philosophical Magazine Letters, 2006, 86(1): 21-29.

【15】

惠卫军,董瀚,翁宇庆,等.超细晶粒高强度钢的延迟断裂行为[J].金属学报,2004, 40(6): 561-568.

【16】

孙曙明,顾家琳,陈南平.TEM研究氢对双相组织的影响[J].金属科学与工艺,1990, 9(2): 33-38.

【17】

HADZIPASIC A B, MALINA J, NIZNIK S. The influence of microstructure on hydrogen diffusion in dual phase steel[J].Acta Metallurgica Slovaca, 2011, 17(2): 129-137.

【18】

DUPREZ L, VERBEKEN K, VERHAEGE M. Effect of hydrogen on the mechanical properties of multiphase high strength steels[C]//Proceedings international conference on effects of hydrogen on materials. [S.l]: ASM International, 2009: 62-69.

【19】

WILDE B E, KIM C D, PHELPS E H. Some observations on the role of inclusions in the hydrogen included blister cracking of linepipe steels in sulfide environments[J]. Corrosion, 1980, 36(11): 625-632.

【20】

DOMIZZI G, ANTERI G, OVEJERO-GARCIA J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels[J]. Corrosion Science, 2001, 43(2): 325-339.

【21】

PREZ ESCOBAR D, MINAMBRES C, DUPREZ L, et al. Internal and surface damage of multiphase steels and pure iron after Electrochemical hydrogen charging[J]. Corrosion Science, 2011, 53(10): 3166-3176.

【22】

MCCOY R A, GERBERICH W W. Hydrogen embrittlement studies of a TRIP steel[J]. Metallurgical Transactions, 1973, 4(2): 539-547.

【23】

RONEVICH J A, SPEER J G, MATLOCK D K. Hydrogen embrittlement of commercially produced advanced high strength sheet steels[J]. SAE International Journal of Materials & Manufacturing, 2010, 3(1): 255-267.

【24】

RONEVICH J A, DE COOMAN B C, SPEER J G,et al. Hydrogen effects in prestrained transformation induced plasticity steel[J]. Metallurgical and Materials Transactions: A,2012, 43(7): 2293-2301.

【25】

PEREZ ESCOBAR D, DEPOVER T, DUPREZ L. Combined thermal desorption spectroscopy,differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel[J]. Acta Materialia, 2012, 60(6): 2593-2605.

【26】

李依依,范存淦,戎利建,等.抗氢脆奥氏体钢及抗氢铝[J].金属学报,2010, 46(11): 1335-1346.

【27】

RYU J H, CHUN Y S, LEE C S,et al. Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel[J].Acta Materialia, 2012, 60(10): 4085-4092.

【28】

RYU J H. Hydrogen embrittlement in TRIP and TWIP steels[D]. Korea: Pohang University of Science and Technology, 2012.

【29】

PEREZ ESCOBAR D, VERBEKEN K, DUPREZ L. Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy[J]. Materials Science and Engineering: A, 2012, 551: 50-58.

【30】

TAU L, CHAN S L I, SHIN C S. Hydrogen enhanced fatigue crack propagation of bainitic and tempered martensitic steels[J]. Corrosion Science, 1996, 38(11): 2049-2060.

【31】

王晓东,王利,戎咏华.TRIP钢研究的现状与发展[J].热处理,2009, 23(6): 8-19.

【32】

GRASSEL O, KRUGER L, FROMMEYER G, et al. High strength Fe-Mn-(Al,Si) TRIP/TWIP steels development-properties-application [J]. International Journal of Plasticity, 2000, 16(10): 1391-1409.

【33】

MITTAL S C, PRASAD R C. Effect of hydrogen on fracture of austenitic Fe-Mn-C steel[J]. ISIJ International,1994, 34(2): 211-216.

【34】

RONEVICH J A, KIM S K, SPEER J G, et al. Hydrogen effects on cathodically charged twinning-induced plasticity steel[J].Scripta Materialia, 2012, 66(12): 956-959.

【35】

KOYAMA M, AKIYAMA E, TSUZAKI K.Effect of hydrgen content on the embrittlement in a Fe-Mn-C twinning-induced plasticity steel[J]. Corrosion Science, 2012, 59: 277-281.

【36】

KOYAMA M, SAWAGUCHI T, LEE T, et al. Work hardening associated with ε-martensitic transformation, deformation twinning and dynamic strain aging in Fe-17Mn-0.6 C and Fe-17Mn-0.8 C TWIP steels[J]. Materials Science and Engineering: A, 2011, 528(24): 7310-7316.

【37】

KOYAMA M, AKIYAMA E, TSUZAKI K, et al. Hydrogen-induced cracking at grain and twin boundaries in an Fe-Mn-C austenitic steel[J]. Scripta Materialia, 2012, 66(7): 459-462.

【38】

KOYAMA M, AKIYAMA E, TSUZAKI K, et al. Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging[J]. Acta Materialia,2013, 61(12): 4607-4618.

【39】

SO K H, KIM J S, CHUN Y S, et al. Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe-18Mn-1.5Al-0.6C TWIP Steel[J]. ISIJ International,2009, 49(12): 1952-1959.

【40】

MULLNER P, SOLENTHALER C, UGGOWITZER P J, et al. Brittle fracture in austenitic steel[J]. Acta Metallurgica et Materialia,1994,42(7): 2211-2217.

【41】

MAHAJAN S, CHIN G Y. Twin-slip, twin-twin and slip-twin interactions in Co-8 wt.% Fe alloy single crystals[J]. Acta Metallurgica et Materialia, 1973, 21(2): 173-179.

【42】

WANG Y B, SUI M L. Atomic-scale in situ observation of lattice dislocations passing through twin boundaries[J].Applied Physics Letters,2009, 94: 021909(1-3).

【43】

ADLER P H, OLSON G B, OWEN W S. Strain hardening of hadfield manganese steel[J]. Metallurgical and Materials Transactions: A,1986,17(10): 1725-1737.

【44】

DE COOMAN B C, CHIN K G, KIM J. High Mn TWIP steels for automotive applications[M]// CHIABERGE M. New Trends and Developments in Automotive System Engineering. [S.l.]: In Tech, 2011: 101-128.

【45】

CHIN K G, KANG C Y, SHIN S Y, et al. Effect of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels[J]. Materials Science and Engineering: A, 2011, 528(6): 2922-2928.

【46】

KOYAMA M, AKIYAMA E. Hydrogen embrittlement in Al-added twinning-induced plasticity steels evaluated by tensile tests during hydrogen charging[J]. ISIJ International, 2012, 52(12): 2283-2287.

【47】

DUMAY A, CHATEAU J P, ALLAIN S,et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J]. Materials Science and Engineering: A, 2008, 483: 184-187.

【48】

KIM J, LEE S J, DE COOMAN B C. Effect of Al on the stacking fault energy of Fe-18Mn-0.6C twinning-induced plasticity[J]. Scripta Materialia, 2011, 65(4): 363-366.

【49】

PARK I J, JEONG K H, JUNG J G. The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe-18Mn-0.6C twinning-induced Plasticity steels[J]. International Journal of Hydrogen Energy, 2012, 37(12): 9925-9932.

【50】

SPEER J G, EDMONDS D V,RIZZO F C. Partitioning of carbon from supersaturated plates of ferrite, with application to steel Processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3): 219-237.

【51】

LOVICU G, BAGLIANI E P, DE SANCTIS M, et al. Hydrogen embrittlement of a medium carbon Q&P steel[J]. Metallurgical Italiana,2013(6): 3-10.

【52】

LOIDL M, KOLK O, VEITH S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels[J]. Materialwissenschaft und Werkstofftechnik, 2011, 42(12): 1105-1110.

标准分享网无损检测论文频道,免费下载【先进高强度钢氢脆的研究进展】,仅供学习使用,不得商用,如需商用请购买正版先进高强度钢氢脆的研究进展。谢谢合作

【关键词】 氢脆 双相钢 相变诱发塑性钢 孪生诱发塑性钢 淬火-配分钢  罗洁 郭正洪 戎咏华

猜下面文档对你有所帮助
机械工程材料论文排行