采用搅拌摩擦加工方法在Ti-6Al-4V(TC4)钛合金表面成功制备了载银层,研究了银在载银层中形貌、分布及其对载银层力学性能的影响。结果表明:采用此方法可制备厚度700
μm左右的载银层;在载银层的表层可观察到大量平均尺寸为10 nm左右的银纳米晶,这是由于表面强烈的搅拌剪切力产生了机械纳米化现象;在载银层的次表层内析出了银颗粒,银颗粒与基体以共格或半共格界面连接,不会产生游离的银颗粒;均匀分布的银颗粒使得载银层的表面硬度比基体的提高了约30%,但对基体的弹性模量几乎没有影响。
所属栏目
材料性能及应用国家自然科学基金资助项目(51302168);九江市科技计划项目;上海交通大学医工交叉基金资助项目(YG2014MS02)
收稿日期
2016/1/42017/3/21
作者单位
张金凯:金属基复合材料国家重点实验室, 上海 200240
程萌旗:附属第六人民医院, 上海 201101
魏兴乔:中国船舶重工集团公司707 研究所九江分部, 九江 332007
伍来智:中国船舶重工集团公司707 研究所九江分部, 九江 332007
王立强:金属基复合材料国家重点实验室, 上海 200240
吕维洁:金属基复合材料国家重点实验室, 上海 200240
备注
张金凯(1990-),男,湖南益阳人,硕士研究生
引用该论文:
ZHANG Jinkai,CHENG Mengqi,WEI Xingqiao,WU Laizhi,WANG Liqiang,LÜ,Weijie.Microstructure and Mechanical Properties of Silver-Loaded Layer on Surface of TC4 Alloy Prepared by Friction Stir Processing[J].Materials for mechancial engineering,2017,41(6):63~68
张金凯,程萌旗,魏兴乔,伍来智,王立强,吕维洁.搅拌摩擦加工制备TC4钛合金表面载银层的组织形貌和力学性能[J].机械工程材料,2017,41(6):63~68
参考文献
【1】
WANG L Q, LU W J, QIN J N,et al. Microstructure and mechanical properties of cold-rolled TiNbTaZr biomedical β titanium alloy[J]. Materials Science and Engineering A, 2008, 490(1/2):421-426.
【2】
BANERJEE D, WILLIAMS J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013, 61(3):844-879.
【3】
SYKARAS N, IACOPINO A M, MARKER V A, et al. Implant materials, designs, and surface topographies:Their effect on osseointegration. A literature review[J]. International Journal of Oral & Maxillofacial Implants, 2000, 15(5):675-690.
【4】
CATALINA M J, ERIC M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. Journal of Nanopartical Research, 2010, 12(5):1531-1551.
【5】
CHERNOUSOVA S, EPPLE M. Silver as antibacterial agent:ion, nanoparticle, and metal[J]. Angewandte Chemie International Edition, 2013, 52(6):1636-1653.
【6】
MEI S L, WANG H Y, WANG W, et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes[J]. Biomaterials, 2014, 35(14):4255-4265.
【7】
BOSETTI M, MASS A, TOBIN E, et al. Silver coated materials for external fixation devices:In vitro biocompatibility and genotoxicity[J]. Biomaterials, 2002, 23(3):887-892.
【8】
ROGUSKA A, KUDELSJI A, PISAREK M, et al. In situ spectroelectrochemical surface-enhanced Raman scattering (SERS) investigations on composite Ag/TiO2-nanotubes/Ti substrates[J]. Surface Science, 2009, 603(17):2820-2824.
【9】
JEON H J, YI S C, OH S G. Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method[J]. Biomaterials, 2003, 24(27):4921-4928.
【10】
UHM S H, SONG D H, KWON J S, et al. E-beam fabrication of antibacterial silver nanoparticles on diameter-controlled TiO2 nanotubes for bio-implants[J]. Surface & Coatings Technology, 2013, 228(S1):360-366.
【11】
CAO H L, LIU X Y, MENG F H, et al. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects[J]. Biomaterials,2011,32(3):693-705.
【12】
SONG D H, UHM S H, LEE S B, et al. Antimicrobial silver-containing titanium oxide nanocomposite coatings by a reactive magnetron sputtering[J]. Thin Solid Films, 2011, 519(20):7079-7085.
【13】
ZHANG X Y, HANG R Q, WU H B, et al. Synthesis and antibacterial property of Ag-containing TiO2 coatings by combining magnetron sputtering with micro-arc oxidation[J]. Surface & Coatings Technology, 2013, 235(12):748-754.
【14】
ARONG A S. Strengthening mechanisms in crystal plasticity[M]. Oxford:Oxford University Press, 2008.
【15】
GUO Z, MIODOWNIK A P, SAUNDERS N, et al. Influence of stacking-fault energy on high temperature creep of alpha titanium alloys[J]. Scripta Materialia, 2006, 54(12):2175-2178.
【16】
ZHANG Q, XIAO B L, WANG W G, et al. Reactive mechanism and mechanical properties of in situ composites fabricated from an Al-TiO2 system by friction stir processing[J]. Acta Materialia, 2012, 60(20):7090-7103.
【17】
ANVARI S R, KARIMZADEH F, ENAYATI M H. A novel route for development of Al-Cr-O surface nano-composite by friction stir processing[J]. Journal of Alloys & Compounds, 2013, 562(1):48-55.
【18】
GALLAGHER P C J. The influence of alloying, temperature, and related effects on the stacking fault energy[J]. Metallurgical and Materials Transactions, 1970, 1(9):2429-2461.
【19】
HIRSCH P B, KELLY A. Stacking-fault strengthening[J]. Philosophical Magazine, 1965, 12(119):881-900.