采用热膨胀仪研究了耐硫化氢腐蚀X80管线钢在连续冷却过程中的相变行为, 绘制了其连续冷却转变曲线(CCT曲线); 并且利用热模拟试验机对其轧制工艺进行模拟, 研究了变形温度、冷却速率和卷取温度对试验钢组织和硬度的影响, 得到了较优化的轧制工艺; 最后测试了在优化轧制工艺参数下轧制试验钢的力学性能和抗氢致开裂性能。结果表明: 试验钢的相变温度主要发生在450~780 ℃之间; 随着冷却速率增加, 相变开始温度下降, 并且当冷速为1.76~8.8 ℃·s-1时可以得到以针状铁素体为主的组织; 最佳的轧制工艺参数为变形温度(830±15) ℃、冷却速率15 ℃·s-1、卷取温度为(400±15) ℃; 在此工艺参数下轧制得到的试验钢具有优良的抗氢致开裂性能, 并可以满足API5L标准对X80管线钢强度级别的要求。
所属栏目
物理模拟与数值模拟
收稿日期
2015/4/242016/3/28
作者单位
陈健:钢铁研究总院工程用钢研究所, 北京 100081
汪兵:钢铁研究总院工程用钢研究所, 北京 100081
刘清友:钢铁研究总院工程用钢研究所, 北京 100081
备注
陈健(1987-), 男, 辽宁铁岭人, 硕士研究生。
引用该论文:
CHEN Jian,WANG Bing,LIU Qing-you.Optimizing Rolling Process of Hydrogen Sulfide Corrosion Resistant X80 Pipeline Steel by Thermal Simulation[J].Materials for mechancial engineering,2016,40(7):102~108
陈健,汪兵,刘清友.耐硫化氢腐蚀X80管线钢轧制工艺的模拟优化[J].机械工程材料,2016,40(7):102~108
参考文献
【1】
张治国, 吴明, 程浩力, 等. X80 级管线钢的发展及腐蚀实验研究概况[J]. 当代化工, 2011, 40(2): 206-208.
【2】
张斌, 钱成文, 王玉梅, 等. 国内外高钢级管线钢的发展及应用[J]. 石油工程建设, 2012, 38(1): 1-4.
【3】
范跃华, 樊新民, 魏伟, 等. 高强度管线钢连续冷却转变研究[J]. 材料热处理学报, 2008, 29(3): 62-65.
【4】
彭海红, 陈晔, 李国宝, 等.X60管线钢再结晶和过冷奥氏体连续冷却相变行为的研究[J].钢铁钒钛, 2006, 27 (4): 34-37.
【5】
左碧强, 王岩, 米振莉, 等.管线钢X80的CCT曲线研究[J].材料热处理技术, 2010, 39(4): 12-14.
【6】
彭海红, 栾玉武, 黄伟, 等.X65管线钢连续冷却相变行为的研究[J].宽厚板, 2007, 13 (1): 36-38.
【7】
DONG C F, LI X G, LIU Z Y, et al. Hydrogen-induced cracking and healing behaviour of X70 steel [J]. Journal of Alloys and Compounds, 2009, 484: 966-972.
【8】
ZHAO Ming-chun, SHAN Yi-ying, XIAO Fu-ren, et al.Investigation on the H2S resistant behaviors of acicular ferrite and ultrafine ferrite[J]. Materials Letters, 2002, 57: 141-145.
【9】
KOH S U, JUNG H G, KIM K Y. The effect of microstructure on hydrogen induced cracking resistance of high strength low alloy [C]//16th International Corrosion Congress. Beijing: [s.n.]2005: 66.
【10】
王畅畅. 经济型X80管线钢组织与性能关系研究[D].昆明: 昆明理工大学, 2014: 5.
【11】
GREGG J M, BHADESHI H K D H. Solid-state nucleation of acicular ferrite on minerals added to molten steel[J].Actamaterialia, 1997, 45: 739-748.
【12】
KIM Y M, LEE H, KIM N J. Trans-formation behavior and microstructural characteristics of acicular ferrite in linepipe steels[J].Materials Science and Engineering A, 2008, 478: 361-370.
【13】
TANG Zheng-hua, STUMPF W. The role of molyb-denum additions and prior deformation on acicular ferrite formation in microalloyed Nb-Ti low-carbon line-pipe steels[J]. Materials Characterization, 2008, 59: 717-728.
【14】
肖福仁.针状铁素体管线钢的组织控制与细化工艺研究[D].秦皇岛: 燕山大学, 2003: 11-15.
【15】
顾宝兰, 徐学东, 周莉. 管线用钢显微组织对氢致裂纹影响的研究[J]. 理化检验-物理分册, 2006, 42(1): 8-11.
【16】
BEIDOKHTI B, DOLATI A, KOUKABI A H. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking[J]. Materials Science and Engineering A, 2009, 507(1/2): 167-173.
【17】
王勇围.低碳Mn系空冷贝氏体钢的强韧性优化研究[D].北京: 清华大学, 2008: 37.
【18】
胡亮. 耐H2S腐蚀管线钢组织缺陷研究[D] .昆明: 昆明理工大学, 2014: 5.