分别以质量分数为0.1%的氧化石墨烯和石墨烯纳米片为增强相制备了AZ91镁基复合粉和复合材料, 分析了氧化石墨烯与AZ91镁合金的界面反应机理; 测试了复合材料的力学性能并观察了拉伸断口形貌。结果表明: 以氧化石墨烯为增强相复合材料的屈服强度、伸长率和显微硬度分别为224.85 MPa, 8.15%和70.14 HV, 与基体镁合金的相比分别提高了39.7%, 35.4%和31.8%, 高于以石墨烯纳米片为增强相复合材料的; 氧化石墨烯因带有含氧官能团极易与镁合金粉混合均匀, 且两者反应生成的MgO有利于提高石墨烯与镁合金基体的界面结合强度, 从而提高复合材料的力学性能。
所属栏目
江西省教育厅科技项目(GJJ151309)
收稿日期
2015/7/152016/6/28
作者单位
袁秋红:南昌大学机电工程学院, 南昌 330031新余学院新能源科学与工程学院, 新余 338000
曾效舒:南昌大学机电工程学院, 南昌 330031
吴俊斌:南昌大学机电工程学院, 南昌 330031
备注
袁秋红(1981-), 男, 江西吉安人, 博士研究生。
引用该论文:
YUAN Qiu-hong,ZENG Xiao-shu,WU Jun-bin.Mechanical Properties of Graphene Reinforced AZ91 Mg Alloy Based Composite[J].Materials for mechancial engineering,2016,40(8):43~48
袁秋红,曾效舒,吴俊斌.石墨烯增强AZ91镁基复合材料的力学性能[J].机械工程材料,2016,40(8):43~48
参考文献
【1】
LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
【2】
BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9): 351-355.
【3】
BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
【4】
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
【5】
WANG J, LI Z, FAN G, et al. Reinforcement with graphene nanosheets in aluminum matrix composites[J]. Scripta Materialia, 2012, 66(8): 594-597.
【6】
JIANG L, LI Z, FAN G, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution[J]. Carbon, 2012, 50(5): 1993-1998.
【7】
燕绍九, 杨程, 洪起虎, 等. 石墨烯增强铝基纳米复合材料的研究[J]. 材料工程, 2014(4): 1-6.
【8】
RASHAD M, PAN F, TANG A, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method[J]. Progress in Natural Science: Materials International, 2014, 24(2): 101-108.
【9】
王筱峻, 杨锐, 吴昊, 等. 碳纳米管增强铝基复合材料研究进展[J]. 兵器材料科学与工程, 2013, 36(6): 127-134.
【10】
RASHAD M, PAN F, ASIF M, et al. Powder metallurgy of Mg-1%Al-1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs)[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 4250-4255.
【11】
RASHAD M, PAN F, TANG A, et al. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium[J]. Journal of Alloys and Compounds, 2014, 603: 111-118.
【12】
DAI B, FU L, LIAO L, et al. High-quality single-layer graphene via reparative reduction of graphene oxide[J]. Nano Research, 2011, 4(5): 434-439.
【13】
付猛, 岳艳娟, 祝雅娟, 等. 水热法制备石墨烯及其表征[J]. 机械工程材料, 2013, 37(6): 84-88.
【14】
韩朋, 井晓静, 沈湘黔, 等. 氧化石墨烯、短切碳纤维改性聚偏氟乙烯复合膜的摩擦磨损及介电性能[J]. 机械工程材料, 2013, 37(2): 53-56.
【15】
SANANTONIO T, HORT N, MATHAUDHU S N, et al. Magnesium technology 2013[M]. [S.l.]: John Wiley & Sons, Inc, 2013: 345-353.
【16】
LEE K E, OH J J, YUN T, et al. Liquid crystallinity driven highly aligned large graphene oxide composites[J]. Journal of Solid State Chemistry, 2015, 224: 115-119.
【17】
沈明, 张天友, 张东. 氧化石墨烯剥离方法的研究进展[J]. 炭素, 2009(3): 13-18.
【18】
孙鹏展. 石墨烯与氧化钛复合薄膜的制备及其性能研究[D]. 北京: 清华大学, 2012.
【19】
LIAO K, MITTAL A, BOSE S, et al. Aqueous only route toward graphene from graphite oxide[J]. ACS Nano, 2011, 5(2): 1253-1258.
【20】
ZHANG Y, PAN C. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light[J]. Journal of Materials Science, 2011, 46(8): 2622-2626.
【21】
任小孟, 王源升, 何特. 石墨烯热还原程度对其电化学性能的影响[J]. 电子元件与材料, 2013, 32(1): 5-9.
【22】
PAULING L. The nature of the chemical bond. IV. the energy of single bonds and the relative electronegativity of atoms[J]. Journal of the American Chemical Society, 1932, 54(9): 3570-3582.
【23】
XIE S, LI X, SUN Y Y, et al. Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals[J]. Carbon, 2013, 52: 122-127.
【24】
李陇岗, 杨建元, 钟辉, 等. Mg(OH)2热分解动力学机理研究[J]. 盐湖研究, 2006, 14(1): 39-44.
【25】
GENNARI F C, URRETAVIZACYA G. Mechanical alloying of Mg-Ge based mixturas under hydrogen and argon atmospheres[J]. Latin American applied research, 2002, 32(4): 275-280.
【26】
GANESH V V, CHAWLA N. Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: experiments and microstructure-based simulation[J]. Materials Science and Engineering A, 2005, 391(1/2): 342-353.
【27】
ZHANG Z, CHEN D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength[J]. Scripta Materialia, 2006, 54(7): 1321-1326.
【28】
BAKSHI S R, AGARWAL A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J]. Carbon, 2011, 49(2): 533-544.
【29】
徐强, 曾效舒, 徐耀勇, 等. 包覆镍CNTs/AM60复合材料铸态显微组织与力学性能[J]. 机械工程材料,2009, 33(10): 53-56.
【30】
KONDOH K, FUKUDA H, UMEDA J, et al. Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites[J]. Materials Science and Engineering A,2010, 527(16/17): 4103-4108.
【31】
王雪静, 陈得军, 周建国. 碳纳米管/氧化镁纳米复合材料的制备和表征[J]. 化工新型材料,2009, 37(2): 35-36.
【32】
GOH C S, GUPTA M, WEI J, et al. Characterization of high performance Mg/MgO nanocomposites[J]. Journal of Composite Materials, 2007, 41(19): 2325-2335.
【33】
FAN Z, WANG Y, XIA M, et al. Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing[J]. Acta Materialia, 2009, 57(16): 4891-4901.