通过98%大变形异步-同步混合轧制的方法,制备了超细晶镍基合金,并对退火后该合金的显微组织与拉伸性能进行了研究。结果表明:轧制后镍基合金组织得到显著细化,经700℃退火后晶粒尺寸在200 nm以内,经800℃退火后晶粒尺寸仍然在300 nm之内,超细晶镍基合金具有良好的组织稳定性;轧制后镍基合金的强度得到显著提高,经700℃和800℃退火后仍具有较高的强度,尤其经700℃退火后,其屈服强度及抗拉强度分别从轧制前的243 MPa和679 MPa提高到了1 907 MPa和1 949 MPa;强度的提高和良好的组织稳定性主要归因于超细晶镍基合金在退火过程中析出大量均匀弥散分布的纳米
γ'相。
所属栏目
材料性能及应用
收稿日期
2016/11/82017/5/26
作者单位
赵欣:宝钢股份有限公司特钢技术中心, 上海 200940
单爱党:上海交通大学材料科学与工程学院, 上海 200240
备注
赵欣(1981-),男,上海人,工程师,博士
引用该论文:
ZHAO Xin,SHAN Aidang.Microstructure and Tensile Properties of Ultrafine-Grained Ni-Based Alloy Prepared by Severe Deformation Rolling[J].Materials for mechancial engineering,2017,41(7):76~79
赵欣,单爱党.大变形轧制制备超细晶镍基合金的显微组织与拉伸性能[J].机械工程材料,2017,41(7):76~79
参考文献
【1】
VALIEVR Z, ISLAMGALIEV R K, ALEXANDROV I V. Bulk nanostructured materials from severe plastic deformation[J]. Progress in Materials Science, 2000, 45(2):103-189.
【2】
WANG Y M, CHEN M W, ZHOU F H, et al. High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419:912-915.
【3】
LU L, SHEN Y, CHEN X, et al. Ultrahigh strength and high electrical conductivity in copper[J] Science, 2004, 304:422-426.
【4】
MUKHTAROV S, DUDOVA N, VALITOV V. Processing and mechanical properties of bulk nanostructured nickel-based alloys[J]. Materials Science and Engineering A, 2009, 503(1/2):181-184.
【5】
SWAMINATHAN S, RAVI S M, RAO B, et al. Severe plastic deformation (SPD) and nanostructured materials by machining[J]. Journal of Materials Science, 2007, 42(5):1529-1541.
【6】
SHANKAR M R, RAO B C, CHANDRASEKAR S, et al. Thermally stable nanostructured materials from severe plastic deformation of precipitation-treatable Ni-based alloys[J]. Scripta Materialia, 2008, 58(8):675-678.
【7】
SALDANA C, YANG P, MANN J B, et al. Micro-scale components from high-strength nanostructured alloys[J]. Materials Science and Engineering A,2009,503(1/2):172-175.
【8】
DING Y, JIANG J, SHAN A. Microstructures and mechanical properties of commercial purity iron processed by asymmetric rolling[J]. Materials Science and Engineering A, 2009, 509(1/2):76-80.
【9】
JI Y, PARK J. Development of severe plastic deformation by various asymmetric rolling processes[J]. Materials Science and Engineering A, 2009, 499(1/2):14-17.
【10】
JIANG J, DING Y, ZUO F, et al. Mechanical properties and microstructures of ultrafine-grained pure aluminum by asymmetric rolling[J]. Scripta Materialia, 2009, 60(10):905-908.
【11】
HUGHES D A, HANSEN N. Microstructure and strength of nickel at large strains[J]. Acta Materialia, 2000, 48(11):2985-3004.
【12】
SONG K H, KIM H S, KIM W Y. Enhancement of grain refinement and mechanical properties of cross-roll rolled pure copper[J]. Materials Transactions,2011,52(5):1070-1073.
【13】
WILDE G, DINDA G P, RÖSNER H. Synthesis of bulk nanocrystalline materials by repeated cold rolling[J]. Advanced Engineering Materials, 2010, 7(1/2):11-15.
【14】
LI Z, FU L, FU B, et al. Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling[J]. Materials Science and Engineering A, 2012, 558(51):309-318.
【15】
郭润江,孙衍东,单默昆,等.退火对大变形轧制镍基GH80A合金组织与性能的影响[J].材料热处理学报,2016,37(12):86-92.
【16】
BHATTACHARJEE P P, RAY R K, TSUJI N. Cold rolling and recrystallization textures of a Ni-5 at.% W alloy[J]. Acta Materialia, 2009, 57(7):2166-2179.
【17】
BIRKS L, FRIEDMAN H. Particle size determination from X-Ray line broadening[J]. Journal of Applied Physics, 1946, 17(8):687-692.
【18】
CAI J Z, KULOVITS A, SHANKAR M R, et al. Novel microstructures from severely deformed Al-Ti alloys created by chip formation in machining[J]. Journal of Materials Science, 2008, 43(23):7474-7480.