采用分离式霍普金森压杆装置对6013-T4铝合金在不同温度(25,200,300℃)和应变速率(1 000,2 000,3 000,4 000,5 000 s
-1)下进行了动态压缩试验,研究了该铝合金在冲击载荷作用下的动态力学行为,并采用试验拟合得到的Johnson-Cook本构方程,对动态冲击试验进行了数值模拟。结果表明:6013-T4铝合金具有明显的应变速率和应变硬化效应,动态流变应力随变形温度的升高而减小;室温下合金的屈服强度对应变速率不敏感,但随变形温度的升高,屈服强度的应变速率敏感性增强;基于室温准静态与不同温度和应变速率下的动态真应力-真应变曲线,确定了铝合金的Johnson-Cook本构方程;不同温度和应变速率下真应力-真应变曲线的数值模拟结果与本构方程拟合和试验结果均吻合的较好。
所属栏目
物理模拟与数值模拟国家科技攻关项目(2014ZX0400207);国家自然科学基金面上资助项目(51475156)
收稿日期
2016/8/92017/5/23
作者单位
冯擎峰:宁波吉利汽车研究开发有限公司, 宁波 315000
姚再起:宁波吉利汽车研究开发有限公司, 宁波 315000
叶拓:湖南大学汽车车身先进设计制造国家重点实验室, 长沙 410082
朱凌:宁波吉利汽车研究开发有限公司, 宁波 315000
王震虎:湖南大学汽车车身先进设计制造国家重点实验室, 长沙 410082
郭鹏程:湖南大学汽车车身先进设计制造国家重点实验室, 长沙 410082
李落星:湖南大学汽车车身先进设计制造国家重点实验室, 长沙 410082
备注
冯擎峰(1972-),男,河南巩义人,高级工程师,学士
引用该论文:
FENG Qingfeng,YAO Zaiqi,YE Tuo,ZHU Ling,WANG Zhenhu,GUO Pengcheng,LI Luoxing.Dynamic Mechanical Behavior and Numerical Simulation of 6013-T4 Aluminum Alloy at Different Temperatures and Strain Rates[J].Materials for mechancial engineering,2017,41(7):85~90
冯擎峰,姚再起,叶拓,朱凌,王震虎,郭鹏程,李落星.6013-T4铝合金在不同温度和应变速率下的动态力学行为及数值模拟[J].机械工程材料,2017,41(7):85~90
参考文献
【1】
LEE W S, TANG Z C. Relationship between mechanical properties and microstructural response of 6061-T6 aluminum alloy impacted at elevated temperatures[J]. Materials and Design, 2014, 58(6):116-124.
【2】
刁可山, 周贤宾, 李晓星, 等. 铝合金AA6082(T5)挤压型材基本力学性能试验和成形极限图的建立[J]. 中国机械工程, 2004, 15(13):1202-1204.
【3】
回丽, 于翔, 许良, 等. 航空铝合金腐蚀坑当量化技术[J]. 中国机械工程, 2015, 26(16):2233-2243.
【4】
江德斐, 林国彪, 舒大禹, 等. T2铜的动态力学性能及本构关系[J]. 中国有色金属学报, 2016, 26(7):1437-1442.
【5】
张长清, 谢兰生, 陈明和, 等. 高应变率下TC4-DT钛合金的动态力学性能及塑性本构关系[J]. 中国有色金属学报, 2015, 25(2):323-329.
【6】
OOSTERKAMP L D, IVANKOVIC A, VENIZELOS G. High strain rate properties of selected aluminum alloys[J]. Materials Science and Engineering A,2000,278(1/2):225-235.
【7】
GUPTA S, ABOTULA S, SHUKLA A. Determination of Johnson-Cook parameters for cast aluminum alloys[J]. Journal of Engineering Materials and Technology,2014,136(3):1-12.
【8】
FAN X, SUO T, SUN Q, et al. Dynamic mechanical behavior of 6061 al alloy at elevated temperatures and different strain rates[J]. Acta Mechanica Solida Sinica,2013,26(2):111-120.
【9】
BØRVIK T, CLAUSEN A H, ERIKSSON M, et al. Experimental and numerical study on the perforation of AA6005-T6 panels[J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4):35-64.
【10】
WANG Y, JIANG Z. Dynamic compressive behavior of selected aluminum alloy at low temperature[J]. Materials Science and Engineering A, 2012, 553(9):176-180.
【11】
武永甫, 李淑慧, 侯波, 等. 铝合金7075-T651动态流变应力特征及本构模型[J].中国有色金属学报,2013,23(3):658-665.
【12】
ZHANG X M, LI H J, LI H Z, et al. Dynamic property evaluation of aluminum alloy 2519A by split Hopkinson pressure bar[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(1):1-5.
【13】
LEE W S, SUE W C, LIN C F, et al. The strain rate and temperature dependence of the dynamic impact properties of 7075 aluminum alloy[J]. Journal of Materials Processing Technology, 2000, 100(1):116-122.
【14】
TANG X, LI D, PRAKASH V, et al. Effects of microstructure on high strain rate deformation and flow behavior of Al-Mg-Si alloy (AA 6061) under uniaxial compression and combined compression and shear loading[J]. Materials Science and Technology, 2011, 27(1):13-20.
【15】
高玉华. 铝合金LC4和LY24CZ在高应变率拉伸和压缩下的本构关系[J]. 材料科学与工艺, 1994, 2(2):24-29.
【16】
赵寿根, 杨嘉陵, 程伟. 几种航空铝材动态力学性能实验[J]. 北京航空航天大学学报, 2007, 33(8):982-985.
【17】
YANG B, TANG L, LIU Y, et al. Localized deformation in aluminum foam during middle speed Hopkinson bar impact tests[J]. Materials Science and Engineering A, 2013, 560:734-743.
【18】
YE T, LI L X, GUO P C, et al. Effect of aging treatment on the microstructure and flow behavior of 6063 aluminum alloy compressed over a wide range of strain rate[J]. International Journal of Impact Engineering, 2016, 90:72-80.
【19】
LEE W S, TANG Z C. Relationship between mechanical properties and microstructural response of 6061-T6 aluminum alloy impacted at elevated temperatures[J]. Materials and Design, 2014, 58(6):116-124.
【20】
朱浩, 齐芳娟, 张洋.剪应力状态下6061铝合金的力学性能及断裂行为[J]. 中国有色金属学报, 2012, 22(6):1570-1576.