返回顶部
位置:标准分享网>机械工程材料论文>考虑热传导和热辐射时6063铝合金在中等应变速率下热压缩温升的修正
考虑热传导和热辐射时6063铝合金在中等应变速率下热压缩温升的修正
  • 资料大小:

  • 更新时间:

    2016-08-27

  • 授权方式:

    共享学习

  • 资料格式:

    PDF

  • 软件等级:

  • 官方主页:

    http://www.ndt88.com

资料简介

采用Gleeble-1500型热模拟试验机对6063铝合金进行了变形温度为400~520℃、应变速率为0.01~10 s-1的热压缩试验,研究了热压缩过程的温升,在考虑了热传导和热辐射的作用后,探究了变形温度、应变速率和应变量等对绝热校正因子的影响,优化了材料变形的温升方程,对中等应变速率下热压缩的温升进行了修正。结果表明:绝热校正因子随着应变量的增大而降低,且变形温度越高,应变速率越大,则绝热校正因子就越大;热传导和热辐射对合金变形过程的温升具有显著的影响,修正后的温升与应变呈非线性关系,计算得到的温度变化曲线与实际所测得的基本一致,平均误差值小于3%。

所属栏目

物理模拟与数值模拟国家自然科学基金面上资助项目(51475156);国家科技重大专项项目(2014ZX04002071)

收稿日期

2016/8/272017/5/2

作者单位

李世康:湖南大学汽车车身先进设计制造国家重点实验室, 长沙 410082湖南大学机械与运载工程学院, 长沙 410082
李落星:湖南大学汽车车身先进设计制造国家重点实验室, 长沙 410082湖南大学机械与运载工程学院, 长沙 410082
徐戎:湖南文理学院机械工程学院, 常德 415000

备注

李世康(1986-),男,河南开封人,博士研究生

引用该论文:

LI Shikang,LI Luoxing,XU Rong.Temperature Rise Correction of 6063 Aluminum Alloy during Hot Compression at Medium Strain Rate Considering Heat Conduction and Thermal Radiation[J].Materials for mechancial engineering,2017,41(7):98~104
李世康,李落星,徐戎.考虑热传导和热辐射时6063铝合金在中等应变速率下热压缩温升的修正[J].机械工程材料,2017,41(7):98~104


参考文献

【1】

HUANG C Q, DIAO J P, DENG H, et al. Microstructure evolution of 6016 aluminum alloy during compression at elevated temperatures by hot rolling emulation[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6):1576-1582.

【2】

LIN Y C, XIA Y C, CHEN X M, et al. Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate[J]. Computational Materials Science, 2010, 50(1):227-233.

【3】

CAI J, LI F, LIU T, et al. Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain[J].Materials & Design,2011,32(3):1144-1151.

【4】

李红斌, 郑明月, 田伟, 等. 基于Johnson-Cook模型构建M50NiL齿轮钢的流变应力本构方程[J]. 机械工程材料, 2016,40(11):31-37.

【5】

GOETZ R L, SEMIATIN S L. The adiabatic correction factor for deformation heating during the uniaxial compression test[J]. Journal of Materials Engineering and Performance, 2001, 10(6):710-717.

【6】

ZHANG F, SHEN J, YAN X D, et al. Constitutive analysis to predict high-temperature flow stress in 2099 Al-Li alloy[J]. Rare Metal Materials and Engineering,2014,43(6):1312-1318.

【7】

LI L, ZHOU J, DUSZCZYK J. Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion[J]. Journal of Materials Processing Technology, 2006, 172(3):372-380.

【8】

CHARPENTIER P L, STONE B C, ERNST S C, et al. Characterization and modeling of the high temperature flow behavior of aluminum alloy 2024[J]. Metallurgical Transactions A, 1986, 17(12):2227-2237.

【9】

ZHANG J, DI H, WANG X, et al. Constitutive analysis of the hot deformation behavior of Fe-23Mn-2Al-0.2C twinning induced plasticity steel in consideration of strain[J]. Materials & Design, 2013, 44(18):354-364.

【10】

LUO J, LI M Q, MA D W. The deformation behavior and processing maps in the isothermal compression of 7A09 aluminum alloy[J]. Materials Science and Engineering A, 2012, 532(3):548-557.

【11】

肖罡, 杨钦文, 何欢, 等. 基于元模型方法的6013铝合金热变形流变行为建模[J]. 机械工程材料, 2016,40(1):78-82.

【12】

MATAYA M C, SACKSCHEWSKY V E. Effect of internal heating during hot compression on the stress-strain behavior of alloy 304L[J]. Metallurgical and Materials Transactions A, 1994, 25(12):2737-2752.

【13】

DADRAS P, THOMAS J F. Characterization and modeling for forging deformation of Ti-6Ai-2Sn-4Zr-2Mo-0.1Si[J]. Metallurgical and Materials Transactions A, 1981, 12(11):1867-1876.

【14】

OH S I, SEMIATIN S L, JONAS J J. An analysis of the isothermal hot compression test[J].Metallurgical and Materials Transactions A, 1992, 23(3):963-975.

【15】

OTSUKA A, HOSONO K, TANAKA R, et al. A survey of hemispherical total emissivity of the refractory metals in practical use[J]. Energy, 2005, 30(2/3/4):535-543.

【16】

SHEIKHOLESLAMI M, DOMIRI G D, YOUNUS J M, et al. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model[J]. Journal of Magnetism and Magnetic Materials, 2015, 374:36-43.

【17】

WEN C D, MUDAWAR I. Emissivity characteristics of roughened aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models[J]. International Journal of Heat and Mass Transfer, 2004, 47(17/18):3591-3605.

【18】

WEI G S, HUANG P R, LIU D Y,et al. Thermophysical property measurements and thermal energy storge capacity analysis of aluminum alloys[J].Solar Energy,2016,137:66-72.

【19】

RAI A K, TRPATHY H, HAJRA R N,et al. Thermophysical properties of Ni based super alloy 617[J]. Journal of Alloys and Compounds, 2017, 698:442-450.

【20】

BERTELLI F, CHEUNG N, FERREIRA I L,et al. Evaluation of thermophysical properties of Al-Sn-Si alloys based on computational thermodynamics and validation by numerical and experimental simulation of solidification[J]. The Journal of Chemical Thermodynamics, 2016, 98:9-20.

【21】

KENNETH C M. Recommended values of thermophysical properties for selected commercial alloys[M]. Cambridge England:Woodhead Publishing Limited, 2002:19-225.

【22】

CHARPENTIER P L, STONE B C, ERNST S C, et al. Characterization and modeling of the high temperature flow behavior of aluminum alloy 2024[J]. Metallurgical and Materials Transactions A, 1986, 17(12):2227-2237.

标准分享网无损检测论文频道,免费下载【考虑热传导和热辐射时6063铝合金在中等应变速率下热压缩温升的修正】,仅供学习使用,不得商用,如需商用请购买正版考虑热传导和热辐射时6063铝合金在中等应变速率下热压缩温升的修正。谢谢合作

【关键词】 6063铝合金 热压缩 温升 绝热校正因子  李世康 李落星 徐戎

猜下面文档对你有所帮助
机械工程材料论文排行