采用Gleeble-1500型热模拟试验机对6063铝合金进行了变形温度为400~520℃、应变速率为0.01~10 s
-1的热压缩试验,研究了热压缩过程的温升,在考虑了热传导和热辐射的作用后,探究了变形温度、应变速率和应变量等对绝热校正因子的影响,优化了材料变形的温升方程,对中等应变速率下热压缩的温升进行了修正。结果表明:绝热校正因子随着应变量的增大而降低,且变形温度越高,应变速率越大,则绝热校正因子就越大;热传导和热辐射对合金变形过程的温升具有显著的影响,修正后的温升与应变呈非线性关系,计算得到的温度变化曲线与实际所测得的基本一致,平均误差值小于3%。
所属栏目
物理模拟与数值模拟国家自然科学基金面上资助项目(51475156);国家科技重大专项项目(2014ZX04002071)
收稿日期
2016/8/272017/5/2
作者单位
李世康:湖南大学汽车车身先进设计制造国家重点实验室, 长沙 410082湖南大学机械与运载工程学院, 长沙 410082
李落星:湖南大学汽车车身先进设计制造国家重点实验室, 长沙 410082湖南大学机械与运载工程学院, 长沙 410082
徐戎:湖南文理学院机械工程学院, 常德 415000
备注
李世康(1986-),男,河南开封人,博士研究生
引用该论文:
LI Shikang,LI Luoxing,XU Rong.Temperature Rise Correction of 6063 Aluminum Alloy during Hot Compression at Medium Strain Rate Considering Heat Conduction and Thermal Radiation[J].Materials for mechancial engineering,2017,41(7):98~104
李世康,李落星,徐戎.考虑热传导和热辐射时6063铝合金在中等应变速率下热压缩温升的修正[J].机械工程材料,2017,41(7):98~104
参考文献
【1】
HUANG C Q, DIAO J P, DENG H, et al. Microstructure evolution of 6016 aluminum alloy during compression at elevated temperatures by hot rolling emulation[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6):1576-1582.
【2】
LIN Y C, XIA Y C, CHEN X M, et al. Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate[J]. Computational Materials Science, 2010, 50(1):227-233.
【3】
CAI J, LI F, LIU T, et al. Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain[J].Materials & Design,2011,32(3):1144-1151.
【4】
李红斌, 郑明月, 田伟, 等. 基于Johnson-Cook模型构建M50NiL齿轮钢的流变应力本构方程[J]. 机械工程材料, 2016,40(11):31-37.
【5】
GOETZ R L, SEMIATIN S L. The adiabatic correction factor for deformation heating during the uniaxial compression test[J]. Journal of Materials Engineering and Performance, 2001, 10(6):710-717.
【6】
ZHANG F, SHEN J, YAN X D, et al. Constitutive analysis to predict high-temperature flow stress in 2099 Al-Li alloy[J]. Rare Metal Materials and Engineering,2014,43(6):1312-1318.
【7】
LI L, ZHOU J, DUSZCZYK J. Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion[J]. Journal of Materials Processing Technology, 2006, 172(3):372-380.
【8】
CHARPENTIER P L, STONE B C, ERNST S C, et al. Characterization and modeling of the high temperature flow behavior of aluminum alloy 2024[J]. Metallurgical Transactions A, 1986, 17(12):2227-2237.
【9】
ZHANG J, DI H, WANG X, et al. Constitutive analysis of the hot deformation behavior of Fe-23Mn-2Al-0.2C twinning induced plasticity steel in consideration of strain[J]. Materials & Design, 2013, 44(18):354-364.
【10】
LUO J, LI M Q, MA D W. The deformation behavior and processing maps in the isothermal compression of 7A09 aluminum alloy[J]. Materials Science and Engineering A, 2012, 532(3):548-557.
【11】
肖罡, 杨钦文, 何欢, 等. 基于元模型方法的6013铝合金热变形流变行为建模[J]. 机械工程材料, 2016,40(1):78-82.
【12】
MATAYA M C, SACKSCHEWSKY V E. Effect of internal heating during hot compression on the stress-strain behavior of alloy 304L[J]. Metallurgical and Materials Transactions A, 1994, 25(12):2737-2752.
【13】
DADRAS P, THOMAS J F. Characterization and modeling for forging deformation of Ti-6Ai-2Sn-4Zr-2Mo-0.1Si[J]. Metallurgical and Materials Transactions A, 1981, 12(11):1867-1876.
【14】
OH S I, SEMIATIN S L, JONAS J J. An analysis of the isothermal hot compression test[J].Metallurgical and Materials Transactions A, 1992, 23(3):963-975.
【15】
OTSUKA A, HOSONO K, TANAKA R, et al. A survey of hemispherical total emissivity of the refractory metals in practical use[J]. Energy, 2005, 30(2/3/4):535-543.
【16】
SHEIKHOLESLAMI M, DOMIRI G D, YOUNUS J M, et al. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model[J]. Journal of Magnetism and Magnetic Materials, 2015, 374:36-43.
【17】
WEN C D, MUDAWAR I. Emissivity characteristics of roughened aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models[J]. International Journal of Heat and Mass Transfer, 2004, 47(17/18):3591-3605.
【18】
WEI G S, HUANG P R, LIU D Y,et al. Thermophysical property measurements and thermal energy storge capacity analysis of aluminum alloys[J].Solar Energy,2016,137:66-72.
【19】
RAI A K, TRPATHY H, HAJRA R N,et al. Thermophysical properties of Ni based super alloy 617[J]. Journal of Alloys and Compounds, 2017, 698:442-450.
【20】
BERTELLI F, CHEUNG N, FERREIRA I L,et al. Evaluation of thermophysical properties of Al-Sn-Si alloys based on computational thermodynamics and validation by numerical and experimental simulation of solidification[J]. The Journal of Chemical Thermodynamics, 2016, 98:9-20.
【21】
KENNETH C M. Recommended values of thermophysical properties for selected commercial alloys[M]. Cambridge England:Woodhead Publishing Limited, 2002:19-225.
【22】
CHARPENTIER P L, STONE B C, ERNST S C, et al. Characterization and modeling of the high temperature flow behavior of aluminum alloy 2024[J]. Metallurgical and Materials Transactions A, 1986, 17(12):2227-2237.