综述了阳极氧化法制备TiO2纳米管阵列(TNTs)的研究进展。主要介绍了TNTs由恒电压合成到变电压阳极氧化制备的发展历程, 还介绍了电压、电流、电解液组成等因素对TNTs形貌的影响, 并比较了不同电解液中TNTs的形成机理。
所属栏目
综述上海市自然科学基金资助项目(14ZR1429300)
收稿日期
2014/7/32015/7/17
作者单位
张丽娜:上海理工大学建筑与环境学院, 上海 200093
计亚军:上海理工大学理学院, 上海 200093
吴大辉:上海理工大学建筑与环境学院, 上海 200093
贾延臣:上海理工大学建筑与环境学院, 上海 200093
周仕林:上海理工大学理学院, 上海 200093
备注
张丽娜(1988-), 女, 河北沧州人, 硕士研究生。
引用该论文:
ZHANG Li-na,JI Ya-jun,WU Da-hui,JIA Yan-chen,ZHOU Shi-lin.Recent Progress of Highly Ordered TiO2 Nanotube Array Materials Prepared by Anodic Oxidation Method[J].Materials for mechancial engineering,2015,39(9):1~5
张丽娜,计亚军,吴大辉,贾延臣,周仕林.阳极氧化法制备高度有序TiO2纳米管阵列材料的研究进展[J].机械工程材料,2015,39(9):1~5
参考文献
【1】
薛寒松, 李华基, 易于, 等. 铈掺杂二氧化钛纳米管的光催化性能[J]. 机械工程材料, 2008, 32(6): 36-40.
【2】
WEIR A, WESTERHOFF P, FABRICIUS L, et al. Titanium dioxide nanoparticles in food and personal care products[J]. Environmental Science & Technology, 2012, 46(4): 2242-2250.
【3】
TEKIN D, SAYGI B. Photoelectrocatalytic decomposition of acid black 1 dye using TiO2 nanotubes[J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 1057-1061.
【4】
李晓红, 张校刚, 力虎林. TiO2纳米管的模板法制备及表征[J]. 高等学校化学学报, 2001, 22(1): 130-132.
【5】
李纲, 刘中清, 张昭, 等. 水热法制备TiO2纳米管阵列[J]. 催化学报, 2009, 30(1): 37-42.
【6】
朱伟庆, 王树林, 高乾. 阳极氧化法制备有序TiO2纳米管阵列[J]. 上海理工大学学报, 2010, 32(3): 256-258.
【7】
田甜, 王凡, 袁永健, 等. TiO2 纳米管阵列阳极氧化制备的研究进展[J]. 材料导报, 2013(7): 11-15.
【8】
LI Yin-chang, MA Qun, HAN Jun, et al.Controllable preparation, growth mechanism and the properties research of TiO2 nanotube arrays[J]. Applied Surface Science, 2014, 297: 103-108.
【9】
KIM D, GHICOV A, ALBU S P, et al. Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells[J]. Journal of the American Chemical Society, 2008, 130(49): 16454-16455.
【10】
LUAN Xin-ning, GUAN Dong-sheng, WANG Ying. Facile synthesis and morphology control of bamboo-type TiO2 nanotube arrays for high-efficiency dye-sensitized solar cells[J]. The Journal of Physical Chemistry: C, 2012, 116(27): 14257-14263.
【11】
ALBU S P, GHICOV A, ALDABERGENOVA S, et al. Formation of double-walled TiO2 nanotubes and robust anatase membranes[J]. Advanced Materials, 2008, 20(21): 4135-4139.
【12】
JI Ya-jun, LIN Keng-chu, ZHENG He-gen, et al. Fabrication of double-walled TiO2 nanotubes with bamboo morphology via one-step alternating voltage anodization[J]. Electrochemistry Communications, 2011, 13(9): 1013-1015.
【13】
JI Ya-jun, ZHANG Ming-dao, CUI Jie-hu, et al. Highly-ordered TiO2 nanotube arrays with double-walled and bamboo-type structures in dye-sensitized solar cells[J]. Nano Energy, 2012, 1(6): 796-804.
【14】
LIN J, LIU K, CHEN X. Synthesis of periodically structured titania nanotube films and their potential for photonic applications[J]. Small, 2011, 7(13): 1784-1789.
【15】
XIE Yu-long, LI Zi-xia, XU Hua, et al. Fabrication of TiO2 nanotubes with extended periodical morphology by alternating-current anodization[J]. Electrochemistry Communications, 2012, 17: 34-37.
【16】
GUI Qun-fang, YU Dong-liang, ZHANG Shao-yu, et al. Influence of anodizing voltage mode on the nanostructure of TiO2 nanotubes[J]. Journal of Solid State Electrochemistry, 2014, 18(1): 141-148.
【17】
GONG D, GRIMES C A, VARGHESE O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research, 2001, 16(12): 3331-3334.
【18】
MOR G K, VARGHESE O K, PAULOSE M, et al. Fabrication of tapered, conical-shaped titania nanotubes[J]. Journal of Materials Research, 2003, 18(11): 2588-2593.
【19】
MACAK J M, SIROTNA K, SCHMUKI P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes[J]. Electrochimica Acta, 2005, 50(18): 3679-3684.
【20】
JAROENWORALUCK A, REGONINI D, BOWEN C R, et al. Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte[J]. Journal of Materials Science, 2007, 42(16): 6729-6734.
【21】
REGONINI D, BOWEN C R, JAROENWORALUCK A, et al. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes[J]. Materials Science and Engineering: R: Reports, 2013, 74(12): 377-406.
【22】
SHANKAR K, MOR G K, PRAKASAM H E, et al. Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells[J/OL]. Nanotechnology, 2007, 18(6): 065707[2014-07-03].http://iopscience.iop.org/0957-4484/18/6/065707.DOI:10.1088/0957-4484/18/6/065707.
【23】
PAULOSE M, PRAKASAM H E, VARGHESE O K, et al. TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion[J]. The Journal of Physical Chemistry: C, 2007, 111(41): 14992-14997.
【24】
BERGER S, KUNZE J, SCHMUKI P, et al. A lithographic approach to determine volume expansion factors during anodization: using the example of initiation and growth of TiO2 nanotubes[J]. Electrochimica Acta, 2009, 54(24): 5942-5948.
【25】
MACA K J M, TSUCHIYA H, GHICOV A, et al. Dye-sensitized anodic TiO2 nanotubes[J]. Electrochemistry Communications, 2005, 7(11): 1133-1137.
【26】
PAULOSE M, SHANKAR K, VARGHESE O K, et al. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes[J]. Nanotechnology, 2006, 17(5): 1446-1448.
【27】
LEI Bing-xin, LUO Qiu-ping, SUN Zhen-fan, et al. Fabrication of partially crystalline TiO2 nanotube arrays using 1, 2-propanediol electrolytes and application in dye-sensitized solar cells[J]. Advanced Powder Technology, 2013, 24(1): 175-182.
【28】
PAULOSE M, SHANKAR K, YORIYA S, et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length[J]. The Journal of Physical Chemistry: B, 2006, 110(33): 16179-16184.
【29】
FAHIM N F, SEKINO T. A novel method for synthesis of titania nanotube powders using rapid breakdown anodization[J]. Chemistry of Materials, 2009, 21(9): 1967-1979.
【30】
WEI W, KIRCHGEORG R, LEE K, et al. Nitrates: a new class of electrolytes for the rapid anodic growth of self-ordered oxide nanopore layers on Ti and Ta[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2011, 5(10/11): 394-396.
【31】
WENDER H, FEIL A F, DIAZ L B, et al. Self-organized TiO2 nanotube arrays: Synthesis by anodization in an ionic liquid and assessment of photocatalytic properties[J]. ACS Applied Materials & Interfaces, 2011, 3(4): 1359-1365.
【32】
SO S, LEE K, SCHMUKI P. Ultrafast growth of highly ordered anodic TiO2 nanotubes in lactic acid electrolytes[J]. Journal of the American Chemical Society, 2012, 134(28): 11316-11318.
【33】
SREEKANTAN S, WEI L C, LOCKMAN Z. Extremely fast growth rate of TiO2 nanotube arrays in electrochemical bath containing H2O2[J]. Journal of the Electrochemical Society, 2011, 158(12): C397-C402.
【34】
WANG Yan, WU Yu-cheng, QIN Yong-qiang, et al. Rapid anodic oxidation of highly ordered TiO2 nanotube arrays[J]. Journal of Alloys and Compounds, 2011, 509(14): L157-L160.
【35】
KOJIMA R, KIMURA Y, NIWANO M. Influence of the electrolyte composition on formation process and morphology of anodic titanium oxide nanotubes[C]//ECS Meeting Abstracts.[S.l]:The Electrochemical Society, 2013 (2): 109-109.
【36】
SANCHEZ-TOVAR R, LEE K, GARCA-ANTN J, et al. Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynamic conditions[J]. Electrochemistry Communications, 2013, 26: 1-4.