采用氧化还原法、化学气相沉积(CVD)法以及两者结合的方法在基底铜箔表面制备石墨烯膜,并进行了氧化处理,对不同试样在氧化前后的表面形貌、物相组成、氧化速率等进行了对比,探讨了不同石墨烯膜的抗氧化性能。结果表明:氧化后,Cu试样、Cu+r-GO(还原氧化石墨烯)试样、Cu+GP(氧化石墨烯)试样的表面均有CuO和Cu
2O的生成,而Cu+GP/r-GO试样的表面未发现氧化物;在相同的氧化时间下,Cu试样的氧化速率最大,Cu+r-GO试样的氧化速率大于Cu+GP试样的,而Cu+GP/r-GO试样几乎不被氧化;GP/r-GO膜的抗氧化性能最好。
所属栏目
试验研究江西省科技厅攻关资助项目(z02727);南昌大学分析测试中心测试资助项目(201203)
收稿日期
2016/7/252017/8/4
作者单位
陈斯:南昌大学机电工程学院, 南昌 330031
曾效舒:南昌大学机电工程学院, 南昌 330031
备注
陈斯(1991-),女,湖北荆门人,硕士研究生导师:曾效舒教授
引用该论文:
CHEN Si,ZENG Xiaoshu.Oxidation Resistance of Graphene Film Prepared by Different Methods on Copper Surface[J].Materials for mechancial engineering,2017,41(9):48~52
陈斯,曾效舒.铜表面不同方法制备石墨烯膜的抗氧化性能[J].机械工程材料,2017,41(9):48~52
参考文献
【1】
何青, 马爱斌, 江静华,等.石墨烯的制备及其在金属防腐中的应用进展[J].功能材料, 2013,44(增2):176-180.
【2】
魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,1984.
【3】
顾林,丁纪恒,余海斌.石墨烯用于金属腐蚀防护的研究[J].化学进展,2016,28(5):737-743.
【4】
GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
【5】
GU L, LIU S, ZHAO H, et al. Facile preparation of water-dispersible graphene sheets stabilized by carboxylated oligoanilines and their anticorrosion coatings[J]. Acs Applied Materials & Interfaces, 2015, 7(32):17641-17648.
【6】
ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35):3906-3924.
【7】
CHAE H K, SIBERIO-PEREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427:523-527.
【8】
NAIR R R, BLAKE P, GRIGORENKO A N,et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320:1308-1308.
【9】
BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907.
【10】
刘情情,董玉华,周琼.石墨烯薄膜对铜及镍防腐蚀性能的研究进展[J].腐蚀与防护,2014,35(10):971-974.
【11】
CHEN S, BROWN L, LEVENDORF M, et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy[J]. Acs Nano, 2011, 5(2):1321-1327.
【12】
蔡伟,王聪, 方小红,等. 化学气相沉积生长石墨烯薄膜转移方法及转移用支撑材料的研究进展[J]. 机械工程材料, 2015,39(11):7-13.
【13】
GAO L B, REN W C, XU H L, et al. Repeated growth and bubbling transfer of graphene with millimeter-size single-crystal grains using platinum[J].Nature Communications,2012, 3(2), 699-704.
【14】
GUO S, DONG S. Graphene nanosheet:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications[J].Chemical Society Reviews, 2011,40(5):2644-2648.
【15】
梁勇明,周建新, 张芸秋. 铜箔形貌对石墨烯生长质量影响的表面氧化法评判[J]. 机械工程材料, 2015, 39(7):25-30.
【16】
SU Y, KRAVETS V G, WONG S L, et al. Impermeable barrier films and protective coatings based on reduced graphene oxide[J]. Nature Communications, 2014, 5:1-5.
【17】
MOON I K, LEE J, RUOFF R S, et al. Reduced graphene oxide by chemical graphitization[J].Nature Communications, 2010, 1(6):73-77.
【18】
FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18):13831-13840.
【19】
TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. Journal of Chemical Physics, 1970, 53(3):1126-1130.
【20】
LI X, CAI W, AN J, et al. Large area synthesis of high quality and uniform graphene films on copper foils[J]. Science, 2009, 324:1312-1317.
【21】
WU W, LIU Z H, YU Q K,et al. Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing[J]. Sensors and Actuators, 2010, 150(1):296-301.
【22】
王富耻.材料现代分析测试方法[M].北京:北京理工大学出版社, 2006.
【23】
LI X, RUOFF R S. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324:1312-1314.