利用CO
2激光器在38CrMoAl钢表面激光熔覆了Ni35、铁基、钴基和Ni60A合金熔覆层,对比研究了不同熔覆层的组织、耐磨性能和耐腐蚀性能。结果表明:4种熔覆层的显微组织均为细小的枝晶;Ni60A、铁基、钴基、Ni35合金熔覆层的表层硬度分别为771,614,380,290 HV0.1;Ni60A合金熔覆层的耐磨性能最好,磨损率为4.124×10
-14 m
3·N
-1·m
-1,铁基合金熔覆层、钴基合金熔覆层、Ni35合金熔覆层的耐磨性能依次降低;Ni60A合金熔覆层与钴基合金熔覆层的耐腐蚀性能最好,耐腐蚀性保护评级均为8,Ni35合金熔覆层的次之,铁基合金熔覆层的最差。
所属栏目
试验研究宁波市工业攻关重大项目(2015B11023,2015B11056)
收稿日期
2016/10/82017/8/24
作者单位
何骅波:太原理工大学材料科学与工程学院, 太原 030024
杨梦梦:长安大学材料科学与工程学院, 西安 710061
黄晓波:太原理工大学材料科学与工程学院, 太原 030024
戴姣燕:宁波工程学院材化学院, 宁波 315211
徐金富:宁波工程学院材化学院, 宁波 315211
备注
何骅波(1993-),男,浙江东阳人,硕士研究生
引用该论文:
HE Huabo,YANG Mengmeng,HUANG Xiaobo,DAI Jiaoyan,XU Jinfu.Wear Resistance and Corrosion Resistance of Different Laser Cladding Layers on Surface of Screw Steel[J].Materials for mechancial engineering,2017,41(10):11~14
何骅波,杨梦梦,黄晓波,戴姣燕,徐金富.螺杆钢表面不同激光熔覆层的耐磨与耐腐蚀性能[J].机械工程材料,2017,41(10):11~14
参考文献
【1】
RANGANATH S. A review on particulate-reinforced titanium matrix composites[J]. Journal of Materials Science, 1997, 32(1):1-16.
【2】
ABKOWITZ S, ABKOWITZ S M, FISHER H, et al. CermeTi© discontinuously reinforced Ti-matrix composites:Manufacturing, properties, and applications[J]. JOM,2004, 56(5):37-41.
【3】
LI B S, SHANG J L, GUO J J, et al. In situ observation of fracture behavior of in situ TiBw/Ti composites[J]. Materials Science and Engineering A, 2004, 383(2):316-322.
【4】
LU W, ZHANG D, ZHANG X, et al. HREM study of TiB/Ti interfaces in a TiB-TiC in situ composite[J]. Scripta Materialia, 2001, 44(7):1069-1075.
【5】
ZHANG X, LU W, ZHANG D, et al. In situ technique for synthesizing (TiB+TiC)/Ti composites[J]. Scripta Materialia, 1999, 41(1):39-46.
【6】
DUTTA I, SIMS J, SEIGENTHALER D. An analytical study of residual stress effects on uniaxial deformation of whisker reinforced metal-matrix composites[J]. Acta Metallurgica et Materialia, 1993, 41(3):885-908.
【7】
毛小南. TiC颗粒增强钛基复合材料的内应力对材料机械性能的影响[D]. 西安:西北工业大学, 2004.
【8】
吕维洁, 杨志峰. 原位合成钛基复合材料增强体TiC的微结构特征[J]. 中国有色金属学报, 2002, 12(3):511-515.
【9】
CLYNE T W, WITHERS P J. An introduction to metal matrix composites[M]. New York:Cambridge University Press, 1995:44-70,418-420.
【10】
HANABUSA T, NISHIOKA K, FUJIWARA H. Criterion for the triaxial X-ray residual stress analysis[J]. Z Metallkd, 1983, 74(5):307-313.
【11】
FITZPATRICK M E, HUTCHINGS M T, WITHERS P J. Separation of macroscopic, elastic mismatch and thermal expansion misfit stresses in metal matrix composite quenched plates from neutron diffraction measurements[J]. Acta Materialia, 1997, 45(12):4867-4876.
【12】
BRANDES E A, BROOK G B. Smithells metals reference book[M]. London:Butterworth-Heinemann, 1992:14-25.
【13】
ZHANG C, KONG F, XIAO S, et al. Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB+TiC) reinforcements[J]. Materials Science and Engineering A, 2012, 548:152-160.
【14】
FITZPATRICK M E, WITHERS P J, BACZMANSKI A, et al. Changes in the misfit stresses in an Al/SiCp metal matrix composite under plastic strain[J]. Acta Materialia, 2002, 50(5):1031-1040.
【15】
ZHU A W, CSONTOS A, STARKE E A. Computer experiment on superposition of strengthening effects of different particles[J].Acta Materialia,1999,47(6):1713-1721.
【16】
YUAN S P, LIU G, WANG R H, et al. Coupling effect of multiple precipitates on the ductile fracture of aged Al-Mg-Si alloys[J]. Scripta Materialia, 2007, 57(9):865-868.