通过简单的刮涂工艺,将含有氯化亚锡、聚丙烯腈(PAN)和聚甲基丙烯酸甲酯(PMMA)的二甲基甲酰胺(DMF)溶液涂覆在铜箔表面,然后在真空下煅烧,制备出具有三维网络结构的SnO
2-C复合涂层,对其微观结构进行了表征,并对该网络结构SnO
2-C复合涂层一体化负极材料的性能进行了测试。结果表明:该复合涂层具有由宽度为0.1~1
μm的碳基枝条相互连接而形成的连续三维网络结构,该碳基枝条由无定型结构的碳基体、尺寸为10~150 nm的SnO
2纳米粒子和尺寸为1~5 nm的微孔组成;当该复合涂层直接用作锂离子电池的负极时,在50 mA·g
-1电流密度下经过100次循环后其比容量为642 mAh·g
-1,在此循环过程中未出现比容量衰减的现象,在10 A·g
-1电流密度下其比容量仍为50 mA·g
-1电流密度下比容量的43%,该复合涂层表现出良好的电化学性能。
所属栏目
试验研究上海市产学研合作计划项目(沪CXY-2015-017);上海市大学生创新项目(cs1605003)
收稿日期
2016/9/272017/9/21
作者单位
王娜:上海工程技术大学材料工程学院, 上海 201620
杨琪:上海工程技术大学材料工程学院, 上海 201620
崔帅:上海工程技术大学材料工程学院, 上海 201620
杨露:上海工程技术大学材料工程学院, 上海 201620
备注
王娜(1994-),女,甘肃白银人,本科生
引用该论文:
WANG Na,YANG Qi,CUI Shuai,YANG Lu.Microstructure and Performance of SnO2-C Composite Coating with Network Structure Used for Lithium Ion Batteries Anode[J].Materials for mechancial engineering,2017,41(11):23~28
王娜,杨琪,崔帅,杨露.锂离子电池负极用网络结构SnO2-C复合涂层的微观结构及其性能[J].机械工程材料,2017,41(11):23~28
参考文献
【1】
赵智泉, 刘庆雷, 黄大成, 等. 锂离子电池负极用硅/碳纳米复合材料制备方法和性能的研究进展[J]. 机械工程材料, 2012, 36(9): 1-7.
【2】
张静, 王月磊, 刘浩涵, 等. 简单包覆改性LiMn2O4正极材料在高温下的电化学性能[J].机械工程材料,2015,39(3):59-64.
【3】
杨琪, 胡文彬. 无定形SnO2-C复合纤维及其电化学性能研究[J]. 无机材料学报, 2015, 30(8): 861-866.
【4】
HASSAN M F, RAHMAN M M, GUO Z P, et al. SnO2-NiO-C nanocomposite as a high capacity anode material for lithium-ion batteries[J]. Journal of Materials Chemistry, 2010, 20(43): 9707-9712.
【5】
HUA Y M, YANG Q R, MA J M, et al. Sn/SnO2@C composite nanofibers as advanced anode for lithium-ion batteries[J]. Electrochimica Acta, 2015, 186: 271-276.
【6】
HONG Y J, KANG Y C. One-pot synthesis of core-shell-structured tin oxide-carbon composite powders by spray pyrolysis for use as anode materials in Li-ion batteries[J]. Carbon, 2015, 88: 262-269.
【7】
YANG Q, ZHAO J C, SUN T, et al. Enhanced performance of SnO2-C composite fibers containing NiO as lithium-ion battery anodes[J].Ceramics International,2015,41:11213-11220.
【8】
TIAN Q H, TIAN Y, ZHANG Z X, et al. Three-dimensional tin dioxide/carbon composite constructed by hollow nanospheres with quasi-sandwich structures as improved anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2016, 306(29): 213-218.
【9】
CAO K Z, JIAO L F, LIU H Q, et al. 3D hierarchical porous alpha-Fe2O3 nanosheets for high-performance lithium-ion batteries[J]. Advanced Energy Materials,2015,5:1401-1421.
【10】
CAO K Z, JIAO L F, LIU Y C, et al. Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes[J]. Advanced Function Materials, 2015, 25: 1082-1089.
【11】
TANG Y P, HONG L, WU Q L, et al. TiO2(B) nanowire arrays on Ti foil substrate as three-dimensional anode for lithium-ion batteries[J]. Electrochimica Acta, 2016, 195: 27-33.
【12】
TANG Y P, TAN X X, HOU G Y, et al. Nanocrystalline Li4Ti5O12-coated TiO2 nanotube arrays as three-dimensional anode for lithium-ion batteries[J]. Electrochimica Acta, 2014, 117: 172-178.
【13】
TANG Y P, TAN X X, HOU G Y, et al. Synthesis of densenanoca vitiesinside TiO2 nanowire array and its electrochemical properties as a three-dimensional anode material for Li-ion batteries[J]. Electrochimica Acta, 2012, 78: 154-159.
【14】
LI W H, YANG Z Z, JIANG Y, et al. Crystalline red phosphorus incorporated with porous carbon nanofibers as exible electrode for high performance lithium-ion batteries[J]. Carbon, 2014, 78: 455-462.
【15】
PENG Y T, LO C T. Electrospun porous carbon nanofibers as lithium ion battery anodes[J]. Journal of Solid State Electrochemistry, 2015, 19(11): 3401-3410.
【16】
GU C D, MAI Y J, ZHOU J P, et al. Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery[J]. Journal of Power Sources, 2012, 214: 200-207.
【17】
ZHAO H P, JIANG C Y, HE X M, et al. A novel composite anode for LIB prepared via template-like-directed electrodepositing Cu-Sn alloy process[J]. Ionics,2008,14(2): 113-120.
【18】
LIAN P C, WANG J Y, CAI D D, et al. Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries[J]. Electrochimica Acta, 2014, 116: 103-110.