返回顶部
位置:标准分享网>机械工程材料论文>变形镁合金疲劳行为的研究现状
变形镁合金疲劳行为的研究现状
  • 资料大小:

  • 更新时间:

    2016-12-30

  • 授权方式:

    共享学习

  • 资料格式:

    PDF

  • 软件等级:

  • 官方主页:

    http://www.ndt88.com

资料简介

从疲劳循环变形响应行为、疲劳寿命、疲劳裂纹萌生与扩展等方面,综述了变形镁合金疲劳行为的研究现状,重点介绍了加载条件、环境、表面状态等对变形镁合金疲劳性能的影响,指出添加稀土元素,进行喷丸、表面滚压处理和合理的热处理可提高变形镁合金的疲劳强度,延长疲劳寿命,并分析了各种方法的优劣。对变形镁合金疲劳研究的发展方向进行了展望。

所属栏目

综述国家重点研发计划项目(2016YFB0701200)

收稿日期

2016/12/302017/10/28

作者单位

宋晓村:山东省科学院新材料研究所, 济南 250014
赵东清:山东省科学院新材料研究所, 济南 250014山东省轻质高强金属材料省级重点实验室(筹), 济南 250014
周吉学:山东省科学院新材料研究所, 济南 250014山东省汽车轻量化镁合金材料工程技术研究中心, 济南 250014
杨院生:中国科学院金属研究所, 沈阳 110016

备注

宋晓村(1990-),女,山东潍坊人,硕士

引用该论文:

SONG Xiaocun,ZHAO Dongqing,ZHOU Jixue,YANG Yuansheng.Research Progress on Fatigue Behavior of Wrought Magnesium Alloy[J].Materials for mechancial engineering,2017,41(12):1~6
宋晓村,赵东清,周吉学,杨院生.变形镁合金疲劳行为的研究现状[J].机械工程材料,2017,41(12):1~6


参考文献

【1】

阎峰云, 张玉海. 镁合金的发展及其应用[J]. 现代制造技术与装备, 2007(4):13-15.

【2】

丁文江, 靳丽, 吴文祥,等. 变形镁合金中的织构及其优化设计[J]. 中国有色金属学报, 2011, 21(10):2371-2381.

【3】

HUPPMANN M, LENTZ M, CHEDID S,et al. Analyses of deformation twinning in the extruded magnesium alloy AZ31 after compressive and cyclic loading[J]. Journal of Materials Science, 2011, 46(4):938-950.

【4】

WU W, LEE S Y, PARADOWSKA A M,et al. Twinning-detwinning behavior during fatigue-crack propagation in a wrought magnesium alloy AZ31B[J]. Materials Science and Engineering A, 2012, 556:278-286.

【5】

DONG S, JIANG Y, DONG J,et al. Cyclic deformation and fatigue of extruded ZK60 magnesium alloy with aging effects[J]. Materials Science and Engineering A,2014,615:262-272.

【6】

PARK S H, HONG S G, BANG W, et al. Effect of anisotropy on the low-cycle fatigue behavior of rolled AZ31 magnesium alloy[J]. Materials Science and Engineering A, 2010, 527(3):417-423.

【7】

WANG C, LUO T J, ZHOU J X, et al. Anisotropic cyclic deformation behavior of extruded ZA81M magnesium alloy[J]. International Journal of Fatigue, 2017, 96:178-184.

【8】

MIRZA F A, CHEN D L, LI D J, et al. Low cycle fatigue of an extruded Mg-3Nd-0.2Zn-0.5Zr magnesium alloy[J]. Materials & Design, 2014, 64:63-73.

【9】

YIN S M, LI S X. Low-cycle fatigue behaviors of an as-extruded Mg-12%Gd-3%Y-0.5%Zr alloy[J]. Journal of Materials Science & Technology, 2013, 29(8):775-780.

【10】

MOKDAD F, CHEN D L. Strain-controlled low cycle fatigue properties of a rare-earth containing ZEK100 magnesium alloy[J]. Materials & Design, 2015, 67:436-447.

【11】

PARK S H, HONG S G, LEE B H, et al. Low-cycle fatigue characteristics of rolled Mg-3Al-1Zn alloy[J]. International Journal of Fatigue, 2010, 32(11):1835-1842.

【12】

BEGUM S, CHEN D L, XU S, et al. Effect of strain ratio and strain rate on low cycle fatigue behavior of AZ31 wrought magnesium alloy[J]. Materials Science and Engineering A, 2009, 517(1):334-343.

【13】

YIN S M, YANG H J, LI S X, et al. Cyclic deformation behavior of as-extruded Mg-3%Al-1%Zn[J]. Scripta Materialia, 2008, 58(9):751-754.

【14】

MATSUZUKI M, HORIBE S. Analysis of fatigue damage process in magnesium alloy AZ31[J]. Materials Science and Engineering A, 2009, 504(1):169-174.

【15】

HASEGAWA S, TSUCHIDA Y, YANO H, et al. Evaluation of low cycle fatigue life in AZ31 magnesium alloy[J]. International Journal of Fatigue,2007,29(9):1839-1845.

【16】

YU Q, ZHANG J, JIANG Y, et al. Effect of strain ratio on cyclic deformation and fatigue of extruded AZ61A magnesium alloy[J]. International Journal of Fatigue, 2012, 44:225-233.

【17】

XIONG Y, JIANG Y. Cyclic deformation and fatigue of rolled AZ80 magnesium alloy along different material orientations[J]. Materials Science and Engineering A, 2016, 677:58-67.

【18】

UEMATSU Y, KAKIUCHI T, TAMADA K, et al. EBSD analysis of fatigue crack initiation behavior in coarse-grained AZ31 magnesium alloy[J]. International Journal of Fatigue, 2016, 84:1-8.

【19】

YANG F, YIN S M, LI S X, et al. Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime[J]. Materials Science and Engineering A, 2008, 491(1/2):131-136.

【20】

MORITA S, FUJIWARA S, HORI T, et al. Microstructure dependence of fatigue crack propagation behavior in wrought magnesium alloy[J]. Frattura ed Integrita Strutturale, 2016, 35:82-87.

【21】

DUAN G S, WU B L, DU X H, et al. The cyclic frequency sensitivity of low cycle fatigue (LCF) behavior of the AZ31B magnesium alloy[J]. Materials Science and Engineering A, 2014, 603:11-22.

【22】

WANG C, LUO T, YANG Y. Low cycle fatigue behavior of the extruded AZ80 magnesium alloy under different strain amplitudes and strain rates[J]. Journal of Magnesium and Alloys, 2016, 4(3):181-187.

【23】

武艳军. AZ31镁合金疲劳行为研究[D].南京:南京理工大学,2012.

【24】

XIONG Y, YU Q, JIANG Y. Cyclic deformation and fatigue of extruded AZ31B magnesium alloy under different strain ratios[J]. Materials Science and Engineering A, 2016, 649:93-103.

【25】

MIRZA F A, CHEN D L, LI D J, et al. Effect of strain ratio on cyclic deformation behavior of a rare-earth containing extruded magnesium alloy[J]. Materials Science and Engineering A, 2013, 588:250-259.

【26】

SHIOZAWA K, IKEDA A, FUKUMORI T. Effect of stress ratio and loading mode on high cycle fatigue properties of extruded magnesium alloys[J]. Advanced Materials Research, 2014, 891/892:557-562.

【27】

LIN Y C, CHEN X M, LIU Z H, et al. Investigation of uniaxial low-cycle fatigue failure behavior of hot-rolled AZ91 magnesium alloy[J]. International Journal of Fatigue, 2013, 48:122-132.

【28】

ISHIHARA S, TANEGUCHI S, SHIBATA H, et al. Anisotropy of the fatigue behavior of extruded and rolled magnesium alloys[J]. International Journal of Fatigue, 2013, 50:94-100.

【29】

LV F, YANG F, DUAN Q Q, et al. Fatigue properties of rolled magnesium alloy (AZ31) sheet:Influence of specimen orientation[J]. International Journal of Fatigue, 2011, 33(5):672-682.

【30】

PARK S H, HONG S G, YOON J, et al. Influence of loading direction on the anisotropic fatigue properties of rolled magnesium alloy[J]. International Journal of Fatigue, 2016, 87:210-215.

【31】

ROOSTAEI A A, JAHED H. Role of loading direction on cyclic behaviour characteristics of AM30 extrusion and its fatigue damage modelling[J]. Materials Science and Engineering A, 2016, 670:26-40.

【32】

CULBERTSON D, JIANG Y. An experimental study of the orientation effect on fatigue crack propagation in rolled AZ31B magnesium alloy[J]. Materials Science and Engineering A, 2016, 676:10-19.

【33】

LI Q, YU Q, ZHANG J, et al. Effect of strain amplitude on tension-compression fatigue behavior of extruded Mg6Al1ZnA magnesium alloy[J]. Scripta Materialia, 2010, 62(10):778-781.

【34】

CHEN X M, LIN Y C, CHEN J. Low-cycle fatigue behaviors of hot-rolled AZ91 magnesium alloy under asymmetrical stress-controlled cyclic loadings[J]. Journal of Alloys and Compounds, 2013, 579:540-548.

【35】

ROZALI S, MUTOH Y, NAGATA K. Effect of frequency on fatigue crack growth behavior of magnesium alloy AZ61 under immersed 3.5mass% NaCl environment[J]. Materials Science and Engineering A, 2011, 528(6):2509-2516.

【36】

UEMATSU Y, KAKIUCHI T, NAKAJIMA M, et al. Fatigue crack propagation of AZ61 magnesium alloy under controlled humidity and visualization of hydrogen diffusion along the crack wake[J]. International Journal of Fatigue, 2014, 59:234-243.

【37】

ZENG R C, HAN E H, KE W. Fatigue and corrosion fatigue of magnesium alloys[J]. Materials Science Forum, 2005, 488/489:721-724.

【38】

UEMATSU Y, TOKAJI K, OHASHI T. Corrosion fatigue behavior of extruded AZ80, AZ61, and AM60 magnesium alloys in distilled water[J]. Strength of Materials, 2008, 40(1):130-133.

【39】

NAN Z Y, ISHIHARA S, GOSHIMA T. Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution[J]. International Journal of Fatigue, 2008, 30(7):1181-1188.

【40】

SAJURI Z B, MIYASHITA Y, MUTOH Y. Effects of humidity and temperature on the fatigue behaviour of an extruded AZ61 magnesium alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2005, 28(4):373-379.

【41】

ZENG R C, HAN E H, KE W. Effect of temperature and relative humidity on fatigue crack propagation behavior of AZ61 magnesium alloy[J]. Materials Science Forum, 2007, 546/547/548/549:409-412.

【42】

GRINBERG N M, SERDYUK V A, OSTAPENKO I L, et al. Effect of low temperature on fatigue failure of magnesium alloy MA12[J]. Materials Science, 1979, 15(1):17-21.

【43】

IMANDOUST A, BARRETT C D, AL-SAMMAN T, et al. A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys[J]. Journal of Materials Science, 2017, 52(1):1-29.

【44】

ZHU R, CAI X, WU Y, et al. Low-cycle fatigue behavior of extruded Mg-10Gd-2Y-0.5Zr alloys[J]. Materials & Design, 2014, 53:992-997.

【45】

MOKHTARISHIRAZABAD M, BOUTORABI S M A, AZADI M,et al. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy[J]. Materials Science and Engineering A, 2013, 587:179-184.

【46】

MIRZA F A, WANG K, BHOLE S D,et al. Strain-controlled low cycle fatigue properties of a rare-earth containing ME20 magnesium alloy[J]. Materials Science and Engineering A, 2016, 661:115-125.

【47】

WANG F, DONG J, FENG M,et al. A study of fatigue damage development in extruded Mg-Gd-Y magnesium alloy[J]. Materials Science and Engineering A, 2014, 589:209-216.

【48】

MIRZA F A, CHEN D L, LI D J, et al. Cyclic deformation behavior of a rare-earth containing extruded magnesium alloy:Effect of heat treatment[J]. Metallurgical and Materials Transactions A, 2015, 46(3):1168-1187.

【49】

ADAMS J F, ALLISON J E, JONES J W. The effects of heat treatment on very high cycle fatigue behavior in hot-rolled WE43 magnesium[J]. International Journal of Fatigue, 2016, 93:372-386.

【50】

DONG J, LIU W C, SONG X, et al. Influence of heat treatment on fatigue behaviour of high-strength Mg-10Gd-3Y alloy[J]. Materials Science and Engineering A, 2010, 527(21/22):6053-6063.

【51】

LIU W C, DONG J, ZHANG P, et al. High cycle fatigue behavior of as-extruded ZK60 magnesium alloy[J]. Journal of Materials Science, 2009, 44(11):2916-2924.

【52】

ZHANG P, LINDEMANN J, LEYENS C. Influence of shot peening on notched fatigue strength of the high-strength wrought magnesium alloy AZ80[J]. Journal of Alloys and Compounds, 2010, 497(1):380-385.

【53】

ZINN W, SCHOLTES B. Mechanical surface treatments of lightweight materials-Effects on fatigue strength and near-surface microstructures[J]. Journal of Materials Engineering and Performance, 1999, 8(2):145-151.

【54】

ZHANG P, LINDEMANN J. Effect of roller burnishing on the high cycle fatigue performance of the high-strength wrought magnesium alloy AZ80[J]. Scripta Materialia, 2005, 52(10):1011-1015.

标准分享网无损检测论文频道,免费下载【变形镁合金疲劳行为的研究现状】,仅供学习使用,不得商用,如需商用请购买正版变形镁合金疲劳行为的研究现状。谢谢合作

【关键词】 变形镁合金 疲劳性能 循环变形 疲劳寿命  宋晓村 赵东清 周吉学 杨院生

猜下面文档对你有所帮助
机械工程材料论文排行