从疲劳循环变形响应行为、疲劳寿命、疲劳裂纹萌生与扩展等方面,综述了变形镁合金疲劳行为的研究现状,重点介绍了加载条件、环境、表面状态等对变形镁合金疲劳性能的影响,指出添加稀土元素,进行喷丸、表面滚压处理和合理的热处理可提高变形镁合金的疲劳强度,延长疲劳寿命,并分析了各种方法的优劣。对变形镁合金疲劳研究的发展方向进行了展望。
所属栏目
综述国家重点研发计划项目(2016YFB0701200)
收稿日期
2016/12/302017/10/28
作者单位
宋晓村:山东省科学院新材料研究所, 济南 250014
赵东清:山东省科学院新材料研究所, 济南 250014山东省轻质高强金属材料省级重点实验室(筹), 济南 250014
周吉学:山东省科学院新材料研究所, 济南 250014山东省汽车轻量化镁合金材料工程技术研究中心, 济南 250014
杨院生:中国科学院金属研究所, 沈阳 110016
备注
宋晓村(1990-),女,山东潍坊人,硕士
引用该论文:
SONG Xiaocun,ZHAO Dongqing,ZHOU Jixue,YANG Yuansheng.Research Progress on Fatigue Behavior of Wrought Magnesium Alloy[J].Materials for mechancial engineering,2017,41(12):1~6
宋晓村,赵东清,周吉学,杨院生.变形镁合金疲劳行为的研究现状[J].机械工程材料,2017,41(12):1~6
参考文献
【1】
阎峰云, 张玉海. 镁合金的发展及其应用[J]. 现代制造技术与装备, 2007(4):13-15.
【2】
丁文江, 靳丽, 吴文祥,等. 变形镁合金中的织构及其优化设计[J]. 中国有色金属学报, 2011, 21(10):2371-2381.
【3】
HUPPMANN M, LENTZ M, CHEDID S,et al. Analyses of deformation twinning in the extruded magnesium alloy AZ31 after compressive and cyclic loading[J]. Journal of Materials Science, 2011, 46(4):938-950.
【4】
WU W, LEE S Y, PARADOWSKA A M,et al. Twinning-detwinning behavior during fatigue-crack propagation in a wrought magnesium alloy AZ31B[J]. Materials Science and Engineering A, 2012, 556:278-286.
【5】
DONG S, JIANG Y, DONG J,et al. Cyclic deformation and fatigue of extruded ZK60 magnesium alloy with aging effects[J]. Materials Science and Engineering A,2014,615:262-272.
【6】
PARK S H, HONG S G, BANG W, et al. Effect of anisotropy on the low-cycle fatigue behavior of rolled AZ31 magnesium alloy[J]. Materials Science and Engineering A, 2010, 527(3):417-423.
【7】
WANG C, LUO T J, ZHOU J X, et al. Anisotropic cyclic deformation behavior of extruded ZA81M magnesium alloy[J]. International Journal of Fatigue, 2017, 96:178-184.
【8】
MIRZA F A, CHEN D L, LI D J, et al. Low cycle fatigue of an extruded Mg-3Nd-0.2Zn-0.5Zr magnesium alloy[J]. Materials & Design, 2014, 64:63-73.
【9】
YIN S M, LI S X. Low-cycle fatigue behaviors of an as-extruded Mg-12%Gd-3%Y-0.5%Zr alloy[J]. Journal of Materials Science & Technology, 2013, 29(8):775-780.
【10】
MOKDAD F, CHEN D L. Strain-controlled low cycle fatigue properties of a rare-earth containing ZEK100 magnesium alloy[J]. Materials & Design, 2015, 67:436-447.
【11】
PARK S H, HONG S G, LEE B H, et al. Low-cycle fatigue characteristics of rolled Mg-3Al-1Zn alloy[J]. International Journal of Fatigue, 2010, 32(11):1835-1842.
【12】
BEGUM S, CHEN D L, XU S, et al. Effect of strain ratio and strain rate on low cycle fatigue behavior of AZ31 wrought magnesium alloy[J]. Materials Science and Engineering A, 2009, 517(1):334-343.
【13】
YIN S M, YANG H J, LI S X, et al. Cyclic deformation behavior of as-extruded Mg-3%Al-1%Zn[J]. Scripta Materialia, 2008, 58(9):751-754.
【14】
MATSUZUKI M, HORIBE S. Analysis of fatigue damage process in magnesium alloy AZ31[J]. Materials Science and Engineering A, 2009, 504(1):169-174.
【15】
HASEGAWA S, TSUCHIDA Y, YANO H, et al. Evaluation of low cycle fatigue life in AZ31 magnesium alloy[J]. International Journal of Fatigue,2007,29(9):1839-1845.
【16】
YU Q, ZHANG J, JIANG Y, et al. Effect of strain ratio on cyclic deformation and fatigue of extruded AZ61A magnesium alloy[J]. International Journal of Fatigue, 2012, 44:225-233.
【17】
XIONG Y, JIANG Y. Cyclic deformation and fatigue of rolled AZ80 magnesium alloy along different material orientations[J]. Materials Science and Engineering A, 2016, 677:58-67.
【18】
UEMATSU Y, KAKIUCHI T, TAMADA K, et al. EBSD analysis of fatigue crack initiation behavior in coarse-grained AZ31 magnesium alloy[J]. International Journal of Fatigue, 2016, 84:1-8.
【19】
YANG F, YIN S M, LI S X, et al. Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime[J]. Materials Science and Engineering A, 2008, 491(1/2):131-136.
【20】
MORITA S, FUJIWARA S, HORI T, et al. Microstructure dependence of fatigue crack propagation behavior in wrought magnesium alloy[J]. Frattura ed Integrita Strutturale, 2016, 35:82-87.
【21】
DUAN G S, WU B L, DU X H, et al. The cyclic frequency sensitivity of low cycle fatigue (LCF) behavior of the AZ31B magnesium alloy[J]. Materials Science and Engineering A, 2014, 603:11-22.
【22】
WANG C, LUO T, YANG Y. Low cycle fatigue behavior of the extruded AZ80 magnesium alloy under different strain amplitudes and strain rates[J]. Journal of Magnesium and Alloys, 2016, 4(3):181-187.
【23】
武艳军. AZ31镁合金疲劳行为研究[D].南京:南京理工大学,2012.
【24】
XIONG Y, YU Q, JIANG Y. Cyclic deformation and fatigue of extruded AZ31B magnesium alloy under different strain ratios[J]. Materials Science and Engineering A, 2016, 649:93-103.
【25】
MIRZA F A, CHEN D L, LI D J, et al. Effect of strain ratio on cyclic deformation behavior of a rare-earth containing extruded magnesium alloy[J]. Materials Science and Engineering A, 2013, 588:250-259.
【26】
SHIOZAWA K, IKEDA A, FUKUMORI T. Effect of stress ratio and loading mode on high cycle fatigue properties of extruded magnesium alloys[J]. Advanced Materials Research, 2014, 891/892:557-562.
【27】
LIN Y C, CHEN X M, LIU Z H, et al. Investigation of uniaxial low-cycle fatigue failure behavior of hot-rolled AZ91 magnesium alloy[J]. International Journal of Fatigue, 2013, 48:122-132.
【28】
ISHIHARA S, TANEGUCHI S, SHIBATA H, et al. Anisotropy of the fatigue behavior of extruded and rolled magnesium alloys[J]. International Journal of Fatigue, 2013, 50:94-100.
【29】
LV F, YANG F, DUAN Q Q, et al. Fatigue properties of rolled magnesium alloy (AZ31) sheet:Influence of specimen orientation[J]. International Journal of Fatigue, 2011, 33(5):672-682.
【30】
PARK S H, HONG S G, YOON J, et al. Influence of loading direction on the anisotropic fatigue properties of rolled magnesium alloy[J]. International Journal of Fatigue, 2016, 87:210-215.
【31】
ROOSTAEI A A, JAHED H. Role of loading direction on cyclic behaviour characteristics of AM30 extrusion and its fatigue damage modelling[J]. Materials Science and Engineering A, 2016, 670:26-40.
【32】
CULBERTSON D, JIANG Y. An experimental study of the orientation effect on fatigue crack propagation in rolled AZ31B magnesium alloy[J]. Materials Science and Engineering A, 2016, 676:10-19.
【33】
LI Q, YU Q, ZHANG J, et al. Effect of strain amplitude on tension-compression fatigue behavior of extruded Mg6Al1ZnA magnesium alloy[J]. Scripta Materialia, 2010, 62(10):778-781.
【34】
CHEN X M, LIN Y C, CHEN J. Low-cycle fatigue behaviors of hot-rolled AZ91 magnesium alloy under asymmetrical stress-controlled cyclic loadings[J]. Journal of Alloys and Compounds, 2013, 579:540-548.
【35】
ROZALI S, MUTOH Y, NAGATA K. Effect of frequency on fatigue crack growth behavior of magnesium alloy AZ61 under immersed 3.5mass% NaCl environment[J]. Materials Science and Engineering A, 2011, 528(6):2509-2516.
【36】
UEMATSU Y, KAKIUCHI T, NAKAJIMA M, et al. Fatigue crack propagation of AZ61 magnesium alloy under controlled humidity and visualization of hydrogen diffusion along the crack wake[J]. International Journal of Fatigue, 2014, 59:234-243.
【37】
ZENG R C, HAN E H, KE W. Fatigue and corrosion fatigue of magnesium alloys[J]. Materials Science Forum, 2005, 488/489:721-724.
【38】
UEMATSU Y, TOKAJI K, OHASHI T. Corrosion fatigue behavior of extruded AZ80, AZ61, and AM60 magnesium alloys in distilled water[J]. Strength of Materials, 2008, 40(1):130-133.
【39】
NAN Z Y, ISHIHARA S, GOSHIMA T. Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution[J]. International Journal of Fatigue, 2008, 30(7):1181-1188.
【40】
SAJURI Z B, MIYASHITA Y, MUTOH Y. Effects of humidity and temperature on the fatigue behaviour of an extruded AZ61 magnesium alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2005, 28(4):373-379.
【41】
ZENG R C, HAN E H, KE W. Effect of temperature and relative humidity on fatigue crack propagation behavior of AZ61 magnesium alloy[J]. Materials Science Forum, 2007, 546/547/548/549:409-412.
【42】
GRINBERG N M, SERDYUK V A, OSTAPENKO I L, et al. Effect of low temperature on fatigue failure of magnesium alloy MA12[J]. Materials Science, 1979, 15(1):17-21.
【43】
IMANDOUST A, BARRETT C D, AL-SAMMAN T, et al. A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys[J]. Journal of Materials Science, 2017, 52(1):1-29.
【44】
ZHU R, CAI X, WU Y, et al. Low-cycle fatigue behavior of extruded Mg-10Gd-2Y-0.5Zr alloys[J]. Materials & Design, 2014, 53:992-997.
【45】
MOKHTARISHIRAZABAD M, BOUTORABI S M A, AZADI M,et al. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy[J]. Materials Science and Engineering A, 2013, 587:179-184.
【46】
MIRZA F A, WANG K, BHOLE S D,et al. Strain-controlled low cycle fatigue properties of a rare-earth containing ME20 magnesium alloy[J]. Materials Science and Engineering A, 2016, 661:115-125.
【47】
WANG F, DONG J, FENG M,et al. A study of fatigue damage development in extruded Mg-Gd-Y magnesium alloy[J]. Materials Science and Engineering A, 2014, 589:209-216.
【48】
MIRZA F A, CHEN D L, LI D J, et al. Cyclic deformation behavior of a rare-earth containing extruded magnesium alloy:Effect of heat treatment[J]. Metallurgical and Materials Transactions A, 2015, 46(3):1168-1187.
【49】
ADAMS J F, ALLISON J E, JONES J W. The effects of heat treatment on very high cycle fatigue behavior in hot-rolled WE43 magnesium[J]. International Journal of Fatigue, 2016, 93:372-386.
【50】
DONG J, LIU W C, SONG X, et al. Influence of heat treatment on fatigue behaviour of high-strength Mg-10Gd-3Y alloy[J]. Materials Science and Engineering A, 2010, 527(21/22):6053-6063.
【51】
LIU W C, DONG J, ZHANG P, et al. High cycle fatigue behavior of as-extruded ZK60 magnesium alloy[J]. Journal of Materials Science, 2009, 44(11):2916-2924.
【52】
ZHANG P, LINDEMANN J, LEYENS C. Influence of shot peening on notched fatigue strength of the high-strength wrought magnesium alloy AZ80[J]. Journal of Alloys and Compounds, 2010, 497(1):380-385.
【53】
ZINN W, SCHOLTES B. Mechanical surface treatments of lightweight materials-Effects on fatigue strength and near-surface microstructures[J]. Journal of Materials Engineering and Performance, 1999, 8(2):145-151.
【54】
ZHANG P, LINDEMANN J. Effect of roller burnishing on the high cycle fatigue performance of the high-strength wrought magnesium alloy AZ80[J]. Scripta Materialia, 2005, 52(10):1011-1015.