以擦镜纸纤维为模板, 经硝酸铈和硝酸铜溶液浸渍, 煅烧后制得CuO-CeO2复合材料, 分析了其微观形貌和物相组成, 研究了其表面性能以及催化脱硝性能, 并与商用纳米CeO2和块状CeO2的进行了对比。结果表明: CuO-CeO2复合材料为长管状, 管径约为7 μm, 其中的CuO和CeO2晶粒大小均匀, 粒径为5~8 nm, 自然堆积形成了纳米尺寸的孔隙; 该复合材料中存在立方萤石结构的CeO2, 与商用纳米CeO2相比, 粒径较小, 比表面积较大, 达到106.5 m2·g-1; 掺杂CuO的CuO-CeO2复合材料的催化活性较高, 在催化NH3还原NO时, 当温度为280 ℃ 时NO的转化率就超过了94%, 远高于商用块状CeO2和纳米CeO2的。
所属栏目
材料性能及应用国家自然科学基金资助项目(E080405; 21277094); 陕西省教育厅重点实验室项目(15JS082)
收稿日期
2015/4/282016/9/13
作者单位
陈志刚:江苏大学材料科学与工程学院, 镇江 212013苏州科技学院化学生物与材料工程学院, 江苏省环境功能材料重点实验室, 苏州 215009
刘灿斌:江苏大学材料科学与工程学院, 镇江 212013
钱君超:江苏大学材料科学与工程学院, 镇江 212013苏州科技学院化学生物与材料工程学院, 江苏省环境功能材料重点实验室, 苏州 215009
张凯:江苏大学材料科学与工程学院, 镇江 212013
备注
陈志刚(1955-), 男, 江苏高邮人, 教授, 硕士。
引用该论文:
CHEN Zhi-gang,LIU Can-bin,QIAN Jun-chao,ZHANG Kai.Selective Catalysis Reduction Denitrification Performance at Low Temperature of Biomimicking CuO-CeO2 Composite[J].Materials for mechancial engineering,2016,40(12):73~77
陈志刚,刘灿斌,钱君超,张凯.仿生CuO-CeO2复合材料低温选择性催化还原脱硝性能[J].机械工程材料,2016,40(12):73~77
参考文献
【1】
HE J, REDDY G K, THIEL S W, et al. Simultaneous removal of elemental mercury and NO from flue gas using CeO2 modified MnOx/TiO2 materials[J]. Energy & Fuels, 2013, 27(8): 4832-4839.
【2】
ANDERSSON A, DENG J, DU K, et al. Regionally-varying combustion sources of the January 2013 severe haze events over eastern China[J]. Environmental Science & Technology, 2015, 49(4): 2038-2043.
【3】
YAO S Y, XU W Q, JOHNSTON-PECK A C, et al. Morphological effects of the nanostructured ceria support on the activity and stability of CuO/CeO2 catalysts for the water-gas shift reaction[J]. Physical Chemistry Chemical Physics, 2014, 16(32): 17183-17195.
【4】
FU M, LI C, LU P, et al. A review on selective catalytic reduction of NOx by supported catalysts at 100-300 ℃ — catalysts, mechanism, kinetics[J]. Catalysis Science & Technology, 2014, 4(1): 14-25.
【5】
ZENG Z, LU P, LI C, et al. Removal of NO by carbonaceous materials at room temperature: A review[J]. Catalysis Science & Technology, 2012, 2(11): 2188-2199.
【6】
SHEN Y, ZHU S.Deactivation mechanism of potassium additives on Ti0.8Zr0.2Ce0.2O2.4 for NH3-SCR of NO[J]. Catalysis Science & Technology, 2012, 2(9): 1806-1810.
【7】
LIU Z, YI Y, LI J, et al. A superior catalyst with dual redox cycles for the selective reduction of NOx by ammonia[J]. Chemical Communications, 2013, 49(70): 7726-7728.
【8】
陈丰, 陈志刚, 马娟宁. 水热法合成棒束状纳米CeO2粉体及其催化性能[J]. 机械工程材料, 2014,38 (6):89-90.
【9】
CISTON J, SI R, RODRIGUEZ J A, et al. Morphological and structural changes during the reduction and reoxidation of CuO/CeO2 and Ce1-xCuxO2 nanocatalysts: In situ studies with environmental TEM, XRD, and XAS[J]. The Journal of Physical Chemistry C, 2011, 115(28): 13851-13859.
【10】
DJINOVIC P, BATISTA J, CEHIC B, et al. Utilization of high specific surface area CuO-CeO2 catalysts for high temperature processes of hydrogen production: Steam re-forming of ethanol and methane dry re-forming[J]. The Journal of Physical Chemistry A, 2009, 114(11): 3939-3949.
【11】
YAO X, GAO F, YU Q, et al. NO reduction by CO over CuO-CeO2 catalysts: Effect of preparation methods[J]. Catalysis Science & Technology, 2013, 3(5): 1355-1366.
【12】
王炜, 陈志刚, 陈丰. 以鱼鳞为模板合成仿生氧化铈及其性能[J]. 机械工程材料, 2012,36 (12):17-20.
【13】
QIAN J, CHEN Z, LIU C, et al. Biotemplated fabrication of hierarchical mesoporous CeO2 derived from diatom and its application for catalytic oxidation of CO[J]. Chinese Science Bulletin, 2014, 59(26): 3260-3265.
【14】
RUMRUANGWONG M, WONGKASEMJIT S. Anionic surfactant-aided preparation of high surface area and high thermal stability ceria/zirconia-mixed oxide from cerium and zirconium glycolates via sol-gel process and its reduction property[J]. Applied Organometallic Chemistry, 2008, 22(3): 167-170.
【15】
QIN J, LU J, CAO M, et al. Synthesis of porous CuO-CeO2 nanospheres with an enhanced low-temperature CO oxidation activity[J]. Nanoscale, 2010, 2(12): 2739-2743.