对冷轧态、淬火态、球化态三种低合金高强钢进行了奥氏体化阶段不同加热速率(5, 300 ℃·s-1)下的淬火-配分(Q&P)热处理, 研究了加热速率对其最终显微组织和拉伸性能的影响。结果表明: 在奥氏体化阶段快速(300 ℃·s-1)加热对冷轧态钢具有明显的晶粒细化以及加速奥氏体形成的作用, 而对淬火态和球化态钢的奥氏体形成过程基本没有影响; 经快速加热Q&P处理后, 冷轧态钢的抗拉强度比慢速(5 ℃·s-1)加热后的提高90 MPa, 伸长率仅降低0.9%, 而加热速率对球化态及淬火态钢Q&P处理后的拉伸性能影响较小; 经慢速加热Q&P处理后, 冷轧态和球化态钢中硬质相沿再结晶铁素体晶界呈条带状分布, 变形时易产生孔洞。
所属栏目
材料性能及应用国家“十二五”科技支撑计划项目(2011BAE13B01)
收稿日期
2016/2/262016/9/20
作者单位
刘赓:北京科技大学材料科学与工程学院, 北京 100083
张深根:北京科技大学新材料技术研究院, 北京 100083
刘波:北京科技大学新材料技术研究院, 北京 100083
备注
刘赓(1988-), 男, 黑龙江双鸭山人, 博士研究生。
引用该论文:
LIU Geng,ZHANG Shen-gen,LIU Bo.Effects of Heating Rate on Microstructure and Property of Low-Alloy High-Strength Steel in Different States after Q&P Treatment[J].Materials for mechancial engineering,2016,40(12):92~98
刘赓,张深根,刘波.加热速率对不同状态低合金高强钢Q&P处理后组织和性能的影响[J].机械工程材料,2016,40(12):92~98
参考文献
【1】
SPEER J, MATLOCK D K, DE COOMAN B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622.
【2】
WANG L, SPEER J G. Quenching and partitioning steel heat treatment[J]. Metallography, Microstructure, and Analysis, 2013, 2(4): 268-281.
【3】
SUN J, YU H. Microstructure development and mechanical properties of quenching and partitioning (Q&P) steel and an incorporation of hot-dipping galvanization during Q&P process[J]. Materials Science and Engineering A, 2013, 586: 100-107.
【4】
SUN J, YU H, WANG S, et al. Study of microstructural evolution, microstructure-mechanical properties correlation and collaborative deformation-transformation behavior of quenching and partitioning (Q&P) steel[J]. Materials Science and Engineering A, 2014, 596: 89-97.
【5】
ZHOU S, ZHANG K, WANG Y, et al. High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching-partitioning-tempering process[J]. Materials Science and Engineering A, 2011, 528(27): 8006-8012.
【6】
SANTOFIMIA M J, NGUYEN-MINH T, ZHAO L, et al. New low carbon Q&P steels containing film-like intercritical ferrite[J]. Materials Science and Engineering A, 2010, 527(23): 6429-6439.
【7】
SEO E J, CHO L, DE COOMAN B C. Application of quenching and partitioning processing to medium Mn steel[J]. Metallurgical and Materials Transactions A,2014,46(1):27-31.
【8】
LIU S G, DONG S S, YANG F, et al. Application of quenching-partitioning-tempering process and modification to a newly designed ultrahigh carbon steel[J]. Materials & Design, 2014, 56:37-43.
【9】
WOHLFAHRT D, JRGENS R. Induction heating of thin slabs and sheets in the rolling line[C]//51st Internationales Wissenschaftliches Kolloquium. Ilmenau, Thuringia: Technische Universitt Ilmenau, 2006.
【10】
LESCH C, LVAREZ P, BLECK W, et al. Rapid transformation annealing: A novel method for grain refinement of cold-rolled low-carbon steels[J]. Metallurgical and Materials Transactions A, 2007, 38(9): 1882-1890.
【11】
MASSARDIER V, NGANSOP A, FABRGUE D, et al. Identification of the parameters controlling the grain refinement of ultra-rapidly annealed low carbon Al-killed steels[J]. Materials Science and Engineering A, 2010, 527(21/22): 5654-5663.
【12】
HUANG J, POOLE W, MILITZER M. Austenite formation during intercritical annealing[J]. Metallurgical and Materials Transactions A, 2004, 35(11): 3363-3375.
【13】
CHBIHI A, BARBIER D, GERMAIN L, et al. Interactions between ferrite recrystallization and austenite formation in high-strength steels[J]. Journal of Materials Science, 2014, 49(10): 3608-3621.
【14】
ZHANG J, DING H, MISRA R D K, et al. Enhanced stability of retained austenite and consequent work hardening rate through pre-quenching prior to quenching and partitioning in a Q-P microalloyed steel[J]. Materials Science and Engineering A, 2014, 611: 252-256.
【15】
XIE Z J, REN Y Q, ZHOU W H, et al. Stability of retained austenite in multi-phase microstructure during austempering and its effect on the ductility of a low carbon steel[J]. Materials Science and Engineering A, 2014, 603: 69-75.
【16】
CULITY B D, STOCK S R. Elements of X-ray diffraction[M]. Upper Saddle River, NJ: Addison-Wesley,1978:65-67.
【17】
LI P, LI J, MENG Q, et al. Effect of heating rate on ferrite recrystallization and austenite formation of cold-roll dual phase steel[J]. Journal of Alloys and Compounds, 2013, 578: 320-327.
【18】
YANG D, BROWN E, MATLOCK D, et al. The formation of austenite at low intercritical annealing temperatures in a normalized 0.08C-1.45Mn-0.21Si steel[J]. Metallurgical and Materials Transactions A, 1985, 16(8): 1523-1526.
【19】
LI P, LI J, MENG Q, et al. Effect of heating rate on nucleation and growth of austenite in cold rolled dual phase steel[J]. Ironmaking & Steelmaking, 2015, 42(2): 81-87.
【20】
XIONG X C, CHEN B, HUANG M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel[J]. Scripta Materialia, 2013, 68(5): 321-324.
【21】
LIU G, ZHANG S, LI J, et al. Fast-heating for intercritical annealing of cold-rolled quenching and partitioning steel[J]. Materials Science and Engineering A, 2016, 669: 387-395.
【22】
TASAN C C, HOEFNAGELS J P M, GEERS M G D. Microstructural banding effects clarified through micrographic digital image correlation[J]. Scripta Materialia, 2010, 62(11): 835-838.
【23】
SAEIDI N, ASHRAFIZADEH F, NIROUMAND B, et al. EBSD study of micromechanisms involved in high deformation ability of DP steels[J]. Materials & Design, 2015, 87: 130-137.