磁巴克豪森噪声(MBN)技术可以探测铁磁性材料由于应力作用而发生的微观结构变化,进而评估材料受力和失效情况。基于金属磁畴理论和磁化理论,从微观上对MBN现象进行解释,并结合Jiles-Atherton磁化模型定量分析应力对MBN信号的影响,介绍应力作用下金属材料在弹性变形阶段和塑性变形阶段的MBN信号变化特点,分析材料所受载荷压力和残余应力在本质上对材料磁畴结构、晶粒易磁化轴、晶粒各向异性等微观结构的影响,指出应力既会促使材料内部产生缺陷从而阻碍巴克豪森跳跃,也会促进相邻磁畴壁的融合,进而增加巴克豪森跳跃,最终的MBN信号是应力对巴克豪森跳跃阻碍作用和促进作用相互博弈的结果。最后,还总结了MBN技术在应力评估方面的优势、不足及未来可开展的研究方向。
所属栏目
综述浙江省质监系统质量技术基础建设项目(20180111)
收稿日期
2018/4/11
作者单位
蒋政培:浙江省特种设备检验研究院, 杭州 310020浙江省特种设备安全检测技术研究重点实验室, 杭州 310020
凌张伟:浙江省特种设备检验研究院, 杭州 310020浙江省特种设备安全检测技术研究重点实验室, 杭州 310020
王敏:浙江省特种设备检验研究院, 杭州 310020浙江省特种设备安全检测技术研究重点实验室, 杭州 310020
联系人作者
蒋政培(yookjiang@163.com)
备注
蒋政培(1992-),男,硕士,主要研究方向为电磁无损检测
引用该论文:
JIANG Zhengpei,LING Zhangwei,WANG Min.Progress of Magnetic Barkhausen Noise Technique in Stress Evaluation[J].Nondestructive Testing,2018,40(8):67~74
蒋政培,凌张伟,王敏.磁巴克豪森噪声技术在应力评估中的研究进展[J].无损检测,2018,40(8):67~74
参考文献
【1】
沈功田,郑阳,蒋政培,等. 磁巴克豪森噪声技术的发展现状[J].无损检测, 2016, 38(7):66-74.
【2】
HUEBSCHEN G, ALTPETER I, TSCHUNCKY R, et al. Materials characterization using non-destructive evaluation (NDE) methods[M]. London:Woodhead Publishing, 2016:226-241.
【3】
LORD A E. Elastic wave radiation from simply-vibrating 180° magnetic domain walls[J]. Acta Acustica United with Acustica, 1967, 18(4):187-192.
【4】
SHIBATA M, ONO K. Magneto mechanical acoustic emission-A new method for non-destructive stress measurement[J]. NDT International, 1981, 14(5):227-234.
【5】
沈永娜,沈功田,柯卫杰,等.磁声发射检测技术研究进展[J].无损检测,2017,39(5):87-98.
【6】
ALESSANDRO B, BEATRICE C, BERTOTTI G, et al. Domain wall dynamics and Barkhausen effect in metallic ferromagnetic materials. chapter I. theory[J]. Journal of Applied Physics, 1990, 68(6):2901-2907.
【7】
JILES D C. Dynamics of domain magnetization and the Barkhausen effect[J]. Czechoslovak Journal of Physics, 2000, 50(8):890-988.
【8】
KYPRIS O, NLEBEDIM I C, JILES D C. A new method for obtaining stress-depth calibration profiles for non-destructive evaluation using a frequency-dependent model of Barkhausen emissions[J]. IEEE Transactions on Magnetics, 2013, 49(7):3893-3897.
【9】
THOMAS W A. 180 degree domain walls as a source of magneto acoustic emission[D].Boston:Massachusetts Institute of Technology,1993.
【10】
刘清友,罗旭, 朱海燕,等.基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正[J]. 物理学报,2017,66(10):297-306.
【11】
MANH T L, CALEYO F, HALLEN J M, et al. Model for the correlation between magneto crystalline energy and Barkhausen noise in ferromagnetic materials[J]. Journal of Magnetism and Magnetic Materials,2018,454:155-164.
【12】
KYPRIS O. Detection of sub-surface stresses in ferromagnetic materials using a new Barkhausen noise method[D]. Ames:Iowa State University, 2015.
【13】
MIERCZAK L, JILES D C, FANTONI G. A new method for evaluation of mechanical stress using the reciprocal amplitude of magnetic Barkhausen noise[J]. IEEE Transactions on Magnetics, 2011, 47(2):459-465.
【14】
JILES D C, ATHERTON D L. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1986,61(1):48-60.
【15】
郭贻诚. 铁磁学[M]. 北京:北京大学出版社, 2014:350-353.
【16】
WANG Ping, ZHU Lei, ZHU Qiujun, et al. An application of back propagation neural network for the steel stress detection based on Barkhausen noise theory[J]. NDT&E International,2013,55(3):9-14.
【17】
KYPRIS O, NLEBEDIM I C, JILES D C. Barkhausen spectroscopy:non-destructive characterization of magnetic materials as a function of depth[J]. Journal of Applied Physics,2014,115:17E305.
【18】
DHAR A, CLAPHAM L, ATHERTON D L. Influence of uniaxial plastic deformation on magnetic barkhausen noise in steel[J]. NDT & E International,2001,34(8):507-514.
【19】
KYPRISA O, NLEBEDIMB I C, JILES D C. Measuring stress variation with depth using Barkhausen signals[J]. Journal of Magnetism and Magnetic Materials,2016,407:377-395.
【20】
SULLIVAN D O, COTTERELL M, MESZAROS I. The characterisation of work-hardened austenitic stainless steel by NDT micro-magnetic techniques[J]. NDT & E International, 2004,37(4):265-269.
【21】
FREDDY A. FRANCO G, PADOVESE L R. Non-destructive scanning for applied stress by the continuous magnetic Barkhausen noise method[J]. Journal of Magnetism and Magnetic Materials,2018, 446:231-238.
【22】
KYPRIS O, NLEBEDIM I C, JILES D C. A new method for obtaining stress-depth calibration profiles for non-destructive evaluation using a frequency-dependent model of Barkhausen emissions[J]. IEEE Transactions on Magnetics,2013, 49(7):3893-3897.
【23】
AMIRIA M S, THIELENB M, RABUNG M, et al. On the role of crystal and stress anisotropy in magnetic Barkhausen noise[J]. Journal of Magnetism and Magnetic Materials, 2014,372:16-22.
【24】
MOORTHY V, SHAW B A, DAY S. Evaluation of appliedand residual stresses in case-carburised En36 steel subjected to bending using the magnetic Barkhausen emission technique[J]. Acta Materialia, 2014,52(12):3747-3751.
【25】
BALDEV R, JAYAKUMAR T, MOORTHY V, et al. Characterisation of microstructures, deformation, and fatigue damage in different steels using magnetic Barkhausen emission technique[J]. Russian Journal of Nondestructive Testing, 2001,37(11):789-798.
【26】
祁欣,陈娟,刘殿魁. 利用近饱和磁化产生的巴克豪森效应测量铁磁件二轴应力[J]. 计量学报. 1999,20(1),11-16.
【27】
DING S, TIAN G Y, MOORTHY V, et al. New feature extraction for applied stress detection on ferromagnetic material using magnetic Barkhausen noise[J]. Measurement, 2015, 73:515-519.
【28】
DHAR A, CLAPHAM L, ATHERTON D L. Influence of uniaxial plastic deformation on magnetic Barkhausen noise in steel[J]. NDT & E International, 2001,34(8):507-514.
【29】
KLEBER X, VINCENT A. On the role of residual internal stresses and dislocations on Barkhausen noise in plastically deformed steel[J]. NDT&E International, 2003, 36(6):439-445.